Wed Oct 30 00:02:57 2024
EVENTS
 FREE
SOFTWARE
INSTITUTE

POLITICS
JOBS
MEMBERS'
CORNER

MAILING
LIST

NYLXS Mailing Lists and Archives
NYLXS Members have a lot to say and share but we don't keep many secrets. Join the Hangout Mailing List and say your peice.

DATE 2016-11-01

LEARN

2024-10-30 | 2024-09-30 | 2024-08-30 | 2024-07-30 | 2024-06-30 | 2024-05-30 | 2024-04-30 | 2024-03-30 | 2024-02-29 | 2024-01-29 | 2023-12-29 | 2023-11-29 | 2023-10-29 | 2023-09-29 | 2023-08-29 | 2023-07-29 | 2023-06-29 | 2023-05-29 | 2023-04-29 | 2023-03-29 | 2023-02-28 | 2023-01-28 | 2022-12-28 | 2022-11-28 | 2022-10-28 | 2022-09-28 | 2022-08-28 | 2022-07-28 | 2022-06-28 | 2022-05-28 | 2022-04-28 | 2022-03-28 | 2022-02-28 | 2022-01-28 | 2021-12-28 | 2021-11-28 | 2021-10-28 | 2021-09-28 | 2021-08-28 | 2021-07-28 | 2021-06-28 | 2021-05-28 | 2021-04-28 | 2021-03-28 | 2021-02-28 | 2021-01-28 | 2020-12-28 | 2020-11-28 | 2020-10-28 | 2020-09-28 | 2020-08-28 | 2020-07-28 | 2020-06-28 | 2020-05-28 | 2020-04-28 | 2020-03-28 | 2020-02-28 | 2020-01-28 | 2019-12-28 | 2019-11-28 | 2019-10-28 | 2019-09-28 | 2019-08-28 | 2019-07-28 | 2019-06-28 | 2019-05-28 | 2019-04-28 | 2019-03-28 | 2019-02-28 | 2019-01-28 | 2018-12-28 | 2018-11-28 | 2018-10-28 | 2018-09-28 | 2018-08-28 | 2018-07-28 | 2018-06-28 | 2018-05-28 | 2018-04-28 | 2018-03-28 | 2018-02-28 | 2018-01-28 | 2017-12-28 | 2017-11-28 | 2017-10-28 | 2017-09-28 | 2017-08-28 | 2017-07-28 | 2017-06-28 | 2017-05-28 | 2017-04-28 | 2017-03-28 | 2017-02-28 | 2017-01-28 | 2016-12-28 | 2016-11-28 | 2016-10-28 | 2016-09-28 | 2016-08-28 | 2016-07-28 | 2016-06-28 | 2016-05-28 | 2016-04-28 | 2016-03-28 | 2016-02-28 | 2016-01-28 | 2015-12-28 | 2015-11-28 | 2015-10-28 | 2015-09-28 | 2015-08-28 | 2015-07-28 | 2015-06-28 | 2015-05-28 | 2015-04-28 | 2015-03-28 | 2015-02-28 | 2015-01-28 | 2014-12-28 | 2014-11-28 | 2014-10-28

Key: Value:

Key: Value:

MESSAGE
DATE 2016-11-29
FROM Ruben Safir
SUBJECT Subject: [Learn] The Death of PBS
From learn-bounces-at-nylxs.com Tue Nov 29 16:54:22 2016
Return-Path:
X-Original-To: archive-at-mrbrklyn.com
Delivered-To: archive-at-mrbrklyn.com
Received: from www.mrbrklyn.com (www.mrbrklyn.com [96.57.23.82])
by mrbrklyn.com (Postfix) with ESMTP id E2F9C161313;
Tue, 29 Nov 2016 16:54:20 -0500 (EST)
X-Original-To: learn-at-nylxs.com
Delivered-To: learn-at-nylxs.com
Received: from [10.0.0.62] (flatbush.mrbrklyn.com [10.0.0.62])
by mrbrklyn.com (Postfix) with ESMTP id B6F7A160E77;
Tue, 29 Nov 2016 16:29:26 -0500 (EST)
To: Hangout , learn-at-nylxs.com
From: Ruben Safir
Message-ID: <6926f677-8262-29f9-adc9-323c114db1b5-at-mrbrklyn.com>
Date: Tue, 29 Nov 2016 16:29:26 -0500
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101
Thunderbird/45.5.0
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="------------FDF39B580EC4409B7EAD0553"
X-Mailman-Approved-At: Tue, 29 Nov 2016 16:54:14 -0500
Subject: [Learn] The Death of PBS
X-BeenThere: learn-at-nylxs.com
X-Mailman-Version: 2.1.17
Precedence: list
List-Id:
List-Unsubscribe: ,

List-Archive:
List-Post:
List-Help:
List-Subscribe: ,

Errors-To: learn-bounces-at-nylxs.com
Sender: "Learn"

This is a multi-part message in MIME format.
--------------FDF39B580EC4409B7EAD0553
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7bit

PSB has become a pay for view provider and one of the worse surveillance
arms in the media business. There new passport program which is a
supposed "benefit" of $60 a month membership, lets you buy in to see
shows such as frontline and various science shows which are worth ones
support. But there is a big caveat. This is not your mothers PBS.
These guys are now running with some of the thickest DRM on the internet
and a slew of surveillance software. No less than 9 javascript trackers
are watching you on WNET and PBS. And AFTER you pay for your access,
then they spring their privacy condition on you, which is just fucking
unethical.

This is what they hit you with in order to activate the account AFTER
taking your $60+ dollars

When you call them up, they are all but ready to refund your money, or
so they say, if you object to demanding that you have to be spied on to
watch TV. Then the idiot who is on the phone line is adamant that it
wouldn't bother him in the least bit if anyone spied on his viewing
habits. I reminded him that this was a lack of upbringing and education
on his part.

The last thing they should be doing is to track you. If your loading up
on viewing anti-muslim political pieces on PBS, it is NOBODIES BUSINESS
if we are to have a free society. This is fucking GROUND ZERO in human
political education. When your 4 years old you don't want your kid
sister spying on you, or your parents because your developing your
independence. You can NOT be an independent human being when someone is
spying on you all the time.




--
So many immigrant groups have swept through our town
that Brooklyn, like Atlantis, reaches mythological
proportions in the mind of the world - RI Safir 1998
http://www.mrbrklyn.com

DRM is THEFT - We are the STAKEHOLDERS - RI Safir 2002
http://www.nylxs.com - Leadership Development in Free Software
http://www2.mrbrklyn.com/resources - Unpublished Archive
http://www.coinhangout.com - coins!
http://www.brooklyn-living.com

Being so tracked is for FARM ANIMALS and and extermination camps,
but incompatible with living as a free human being. -RI Safir 2013

--------------FDF39B580EC4409B7EAD0553
Content-Type: image/png;
name="pbs_privacy_trap.png"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;
filename="pbs_privacy_trap.png"

iVBORw0KGgoAAAANSUhEUgAABh0AAAPnCAIAAAC0pRr5AAAACXBIWXMAAA7EAAAOxAGVKw4b
AAAAB3RJTUUH4AsdFQ8p0PTqSQAAAB1pVFh0Q29tbWVudAAAAAAAQ3JlYXRlZCB3aXRoIEdJ
TVBkLmUHAAAgAElEQVR42uzdd1QVRxcA8Lv7Go/eRGlSFAXpUlQQjQqJHRWNJaLGEkvsicYS
o8b42WvsKFiwxN67YkdB6U2Q3vujv7rz/QEoKtKCiub+Dp4jy2P3zt3ZhbnszKPihgwhUI9P
8IJPcxQMowWGgTnHU49h4KnHMPDUYxh46jEMPPUYBp56DANPPYbxJYYRExPDBoDz589jxjEM
bCyGgY3FMLCxGAY2FsPAxmIY2FgMAxuLYWBjMYxGvYAGhBBCCCGEEEIIIYQaj/36fwsIadR3
UhS1DvOHEEIIIYQQQggh9CVjGl8Rev1/ds0v+Pn5NXAXhw4dwrwjhBBCCCGEEEIIfQWaXBHC
eXAIIYQQQgghhBBCqClqqSv1rhOmDCGEEPpcqNbf/nAz7ohIdlaWOd2N+3o7u++BwwWHHXif
Oh523wO+BYcdP9ZxKcXxl848XajL+mpOoGLvc2XH//6G/c5mTs+ZydI7hNwhwtXj1aja8ny2
4HA33pfRSNp00b4y/9HtP91p4/Q9cLXgcHce3iE+D07fA/cLDvfkvenPi5KlYYSEEeHfNfsz
p+fiZGk4IeFEuKO2ft6M8TwqONzrX/cHqvW3827GBYhk0bLMP2vcbxFC6OvWu3fvI8ePvL/9
yPEjH6oI4fNKCKH/FL79qYp9hNT88CLES/TQrctPc4XlUz2qfw/lOH+fIPxjuRUNPCuffC9C
9r/+EF5xVqdAYdSMCrKfkP2MbG9R+spr252tlSjgO5yqOEDIOx/eooduRny746UHCPF+8yH8
dWobCniV233efAgXTG1Dq0+YJyQHEv825VcOK+2HR1WsXNrpw3dtnv3x0oOEHCLMQUnZjleP
py3qo9pSR+OU1uRFZS9HO7IbPE41HvCo5HB5TCO+5SPHv7Ts5dgGByPXafS4C8H7BBUnijK3
+x3o1anJJ4bVduq6wW0ubjTR8lTveMBP/PoLJP3xw+MP82Qfq70ryl5OqK29H/W4jcFzPl56
lZBrhLkmKTv56vHCRX3UWQBs+x+jJNcJuU6Ya6Kio6FXfhpjVnmRU2oOA/bc2Z9ddqVCcCz6
0e9rh7ZpymnhdT9eepOQW4S5KSk7/erxosrjNpbk/g4Ddh9u99OJtaeSpD++d/xhbpPzzLaf
EiW5R8g9wtwVFZ0OvfLzGDO5L+32TWlN3lL2ckZt/ZBJf3z7+MPsj9APKTWHYXvu/JNd9qhC
cCX60Zq1Q3VYTY9/e9nLWZ//JkZpTL31jMhuefWt7ANsx3XnJeR58B8mTW0ak/74es38S+6v
NWBbcbsfeac/S+6vMWBbcrsfTvyXp4rSnHormJDI6o8oInvk9R2nRjzXjj/M/Lf9gWUydd34
Nhfnmmh1Ue/4vxr3W4QQ+rr9OOVHHy+fd0pLR44f8fHy+XHKj7X/ooFZQwj9lwgjF3RZtZoG
oDUmHPppTPSJ/v9LkAIwpYKCb8xr/xZx3PKef27jtprs+5NHyNFB65PERflFBOQAQBS9wPno
5XKWhpnNoq3jriiVWkyKWNBlZfX+p42JPtb/f4lSIExpQTrTEUDmv2rrz2dLqxbFY4SpeQRY
ACDzX7Xl3e0AhAG9Ud8MXP7yVEEDl9GTPf5j7ZRTZWzVNgMW/fDnuelltmv/jidf/mmj9Pp3
Nrl994SlzSDLkwHBsi8qeNp48ny/v3Ufrtjf72o2o2343RgtXRZENa0RLA1DPWn4w6iUfMk7
pz7c2+vnz9A6Wbj33p9bSqplj//4bcqpEraq7oBF0/88t6jM9rfdACDL2DNy5bYowlXXG7Zi
ts9ZySsr7+etentfnWJ00ctzYXgGrd6xi2NfQxUasmRNPO6vU06VsFX1Biya8ee5JWW2C5r7
upOFe2//t3mWpe8ZuXRbFOGqtx22Yr7PWckrq30Bkq/jzi4L9978MzT/vY7W6et9dZbRxb89
FwZn0Boduzj1NVSjIUP2xWeM5KZJXUc4KFx/WMYx/36wXEYG8+/yv+bT3wfKr6/vtfiZGACA
AJHmJ0hrxLO6GeJhtTHUk4Y/fJ6SjyUlhNB/iudoTwDw8fJ5/f/XRaXKT2v5gVnr1rsfgClG
CH3pv0tXJIWlhoSkhoRmZZaDJC8nLCQ1JCQ17FWp+MPfkhKRGhKalVkB4ryc0JDUsMTyqkEF
EWXGZsVEpz0+e3XFkdxW31p2ZlckhaWEhKSEhGZW7z8lJCTl9f5L0tJCQlKqPsJy8qt/Da51
OxHEXIvu9NNI9YY/WlqWnRMTkxH+NGjd1Et+3PaDXJUpWrXf8un3I7cWlnuXZq+7tbOHtVLV
7AOOsf36q2uySr0riv6OffLzDBtWje1rs0p9Kop2vNmu2v1i2dYzGzxvRW3LytsZcX5Ir1ZV
++Ea26+7vDar9GB5/ia/3T0sFaqjYRuvifG59avtDO8VSYKDFYJt1+fqt5/7h4gczfayku8w
6JnkGCHHhNd7adU9H4JW7Te47YvLV889VO4/sObDAtwOHqPPvdgpqDgsSF17cY1dW7rm9l2C
iiOC1HWvt3ONHddd3pRVerQ8f5vf7m+q4uR3O1W2d7dr5Z9ZKJ1py8oiR9uxK7d7HVs06GjA
ztziw2mPJw3VpwEoo7mrRORktpeNfAf3Z5LThJwWXu9TV/yKNktWWudu3frDugD/8ORnN+//
OeHULXFlPF3WXd6aVXqyPH+n3+7e1fE4nyrzPrZo8NGA3bnFR9MeTx6qT1dtrzhHRMt+1JQf
c+4kIeeq58Gxe+08ICPnCTkneGceHNtkTcw/t361n+G9LklwqkLgdX1uO9edB9IfLLmdcCwv
dMac+fMiC//JvDeiizwArd5v+YL7kT6F5WdKs3fd2ulqrUQBUEZz14rIhWyvzvIdPJ5JLhFy
SXj9Wy2q8rgHZeQSIRcFb8+D4xp3W3d5V1bp+fJ8L7/drtXtcjlVduTYomFHA7xzi0+nPZ5W
1a5mvbzLsjNjYlLCn/qvm3rcj2s2yFWVAgCQ5CWlxcSkhD15sn5/hMyovbU6xXdxcmP7r5h1
5eaLlIjAkDM79k3Z8rJGjYWrrqOpq8mjG3rcjJiYlPCnT9ZNPebH7TTIVY3i9zxVdrJGv9pQ
FjnRruqPeZS688hzkWfLy89FX57wnXbdB2H32nlSRu4Sckfw7jw4XgePKede/COouC5I9bq4
xqltPeFK8pJSY2KSw548XL8/XGZkYq1OAQCwTdfE3Lj1a7cZ3ruSBLcqBCevzzViAXCNXdZd
PphVers8/7jf7n5V55HW7Ld8+f3IM4Xld0qzfW/tHFB9P6GU7T18n58rrbiecPfnQfqst+Oc
eu7FWUHFHUGqz8U1zm3pyv2suB95rrDcrzT7aI39AMe45/qrvlml9yqKLsU++XOGDQuANpq7
W0QeZ3t1ke8w9pnkCSFPhNcHa1EAwOm184KMPCHksaDmPDh+n1Nll48tGnM04Exu8Z20x7+8
7m+KtsMOB14urbgdf3vW/O2Hyvx/qGO+Ht+lpxv7wYpZZ2++SIwIfH5mx/YpWyIlQBvO2lP6
au6b4ym5HMy6c/YHVQqAY9xr/dV/skqfVBTdiH3yv+r4vUQkINurm3yHcc8kgYQ8F14fUnnf
oDSs5vjsf5X/WFR6M/zijIFt2QCcXjuvpj/YdDvhXl7o0jnzV0UWPsq8N6mLfHNeLAXXboW4
fNtHCbhdv+2fdedCKlN9/fZed/lMVmlgef4lv93u1edd/5cnzwkJff0hejjWiK7M/20ZCSMk
VFBjHlzjC3ha/ZZvuB95t7A8qDT70q2dQ1/3hzowhemhITEhlR+hr1JLCACn104/GYkiJFLw
zjw4tuWamOBbv/ac4X08SRBSIbhzfa4JC4DSsJ3j4/sqP1hU+jj84tyBbdkAAPx+pypiiGjf
j5qKY86FERLzeh4c19ht3eXLWaUR5fk3/XYPq8yPQrf5wYKLa50rzxCn03zfgvjVAzQp/J0L
IfQll5ZeP7VUb1EJcB4cQgj9e5SCgdn3bhp0ubi8ef9ezhSc2BNlPqW7ReOfLSUisZABDodF
UfxWcjm+C3e4WCywGXg2uuvYi+vNFQCAUh69ZfI4eDjS9pf2tuun7koqYVUND0dvmTIOHo60
nd/edt2b7QBAq/fvI/2rx7w2+n9tp9xO7HFqQwFwDBefnuFJP/Z0WGDtfjXLbeKFjZbKNX7M
2M4b6vTM10n3J+3Ou/aECBO3/smjfmg9Jaw89lIXzhiKGiPX1y+nzrxRrawHO6Tf9st7dCvW
cGDn6qkalNawKbd9uzHHvXp2mm/nfuohr1Ub1uvtTszxfT07zXuznWO4+PRMT/qBp8Nca/fL
WW6TL2y0Uq7nxCoPHKLsNXC2ls4fO5meO5ZZ8oEkbl3Go75vPSWkPPZCF85wihou1/dOHfFz
bG36aOZcPpcgevcLRotPz/Gk73s6zLR2v5jlNvXCRmvlt447U0vn951Mrx3LrPgAUPF4BH8o
JffXwYJyX/fvKWooS3v3LTEASP1+nsSihvfzLqnteQOW7byRTs+8nXR/0O68ZU9IBQClLp+y
auD2M/Kufw1IGue86267AZNdOEDJt5LL8F24zsVims3A49Fdp1xcb60AJHHrIh7l3npKUHns
mS6cQRQ1SK7vzRxSedwJLGpoP+/it47Labf49K+e9F1Ph6nW7mez3GZc2Ghb3S6VgUOUvQZO
0dJZuJNx3bHMhv/xCsgikZChOBx2zYEdS0lvxNAOdMKr0AIiLSwp4Rv16Kpa+7XFc9wZezTe
t3djB4bVx2XV9X20+vApJn7TZ3dy3HBBbejxA33rrAdJ/X7+nkV928+76O3zS2kNm3/btxdz
fHPPTuPs3H0e8to0cCIfS0l/xNCOdEJc6JsHIVm288Y7PdvhpDtQu/Nfe0IqgGOy+PTvnvRN
T4ex1u4nstx+ubDRXhkAKPlWcum+C/9wsRhjM9A7uuusi+vtFABA2WHD6RkOkft6W04aeVBh
3IR27DdxLrjt24c5vr5npzF27gce8rTbsAAohVZy6b4Ll7lYjLIZ6B3ddc7F9fYKAECpjd6y
ZBxcHWk7or3tvKm7XpawAIBJ3DqdRzm3nvKsPNa3C8eJopzk+l7MIQAg8fvZnUX1fC8/AJTa
wCEqXgO/19KZtpPpv2OZAx8AFB3Wnp7bLdbLzXL88APynm/i/ED2C4tK+O17dFV7+2VM8qmr
9zV7j6kuLKl8++0A+vGRywJCqY3e8sc4uDzS1r297cypu2Kq45/CoxxbT/Evjz3cheNAUfZy
fc/nEACO8S/nt85RezjPdWQHu4V/F7keOTnWgg0AlLp8wqqBK87Iu/81IHac8+q77b6f7NKc
C/wwhU9OvbD53k3deYRT6hm/qrISx3Tx6f950pc9Hdyt3Q9nuS29sLGbMgAwqVt7OvH5jny+
o7zOzL2xZdEPwrKZyvy7sii7ft4C5t/9FG0ll+K7cJ6LxQCbgTujuy66uL6rQlN2JPH7uReL
su7nXfiB++EMp2drnXS7andeuCekHDjtfzm/e47avXmu7h3sZv9d1PfIyYkWbICKayP4ppTc
tIMFJb7uVhRlytL+45YYgNNp8ekNnvQFT4fvrN29s9xWXNjorAxQ5r/zx3XlP3nN761C8awn
7f9d4/DktVfzCCCE0NdQWqq3qAQ4Dw4hhGrg258W2tcYUqTW83qe9aHCfYeAomkKJAXnpt0L
rGdSCevbvVuZvdW7j73mbH4qoGr7thrbrzqbn34FAEAKr/idWjlpisu1+SWNaAdLqfWA5d/1
YWdveVLEyGSHF5+pHPNCQsHqPT0nzenYgR0RTJT0ddk51yKfxBVKoDA9obqxdOX2iHe3AwBI
7+288iCPAcg8uPnZkivdB7d+4mPs7GmWtn30lVsvGYC7c9d0jt/Yw3VB+NnSquECuXdp5t5X
AgBIeHk+oSkDDo1v7bqlRCxJYYpEEcF7ug8wvBgTT4DW8vylC3Vk0/iNoaUAkJi3Iagy/srt
G9/ZznFy8TRL2z760q2XDMDtuWvs4zf2cl0QdrauCS2Se7su3M+REUg+eT7l91HGhqzQ6EZO
gOHqarQh+clp745xOA49Pc1St4++cOulDODm3DUO8Rt7uy4IPSurPO75+zkyAkknzyf/Pqqd
ISskuokTbyhy7+zMvS8FAJAQdT6B3WsEyQsM94+K1YuUOIeHhsYUPYmTG6QvT8nSDi8+WvVN
CXmr97hOmmPegR0SLG3c8TgOvTzNUraPPnvrJQNwfe6aLvEbXV0XBFe368z9HBmBxJPnk34f
1d6QFRT9ESYUsZR0Biwf1oedvuVJAUMDsNou8j+/gFAsDkuc9Hiu+9EACcDd43MOr9h74/Do
qOgHD8NunLlzwi+rvBmO69GHnbblSUGdY2wmcNveHQ8yGUhdsezO6MtuQ/SvbU9u5BCU1vb8
pQd1ZNn4jYGlAJCYU9X/64qv7SL/6wsIsDhscdLDue4Ha0yCo8i9YzP3RgkAICHsfAJwnDw8
zZK2jz5x6yUDcHHuGuf4jf1dFzw/W5pyePH+6n6Ss3rPgElzbDqwA2N79x2h+eKXBdcDcgjE
71o7tJd3m8o4dTx/+YY6smT8xmelAJCYXR1n8uHFXu/vJ5io6Otycq49fxKXK4Hc9IRX/+KE
iO/tOno/R0Yg/uT5+N9HdTRkPUvuM2C0VuCv8y765xB4tWvtMLfDenXtQnT34JzDG/beuDA6
KvzBw6AbZ66d8EsvByDZ947cmrV5jP2CO4/LKOX+o7uJzi+7WQTAUtXX5eRcC6iOP66enyE9
R841eza//eFLAgKQ5rXAd/irEcPNT9wHkhcY6B8VoRcpdg4PCI0RPImTH6SvSEFBs9UqSMmN
U+Erx82gO2Wc2ZCjNKby+h3gaRa/ffShWy8ZgNNz1/SM3+juusD/bCnIJGKZBIDWGrn59+EZ
u3v+GVbejBetLPHw4r+r+0PW6j3DJs2x78D2r/v+ozh6m3B09Q+n8F32nXeESuu9H+6fuTdU
AAAJL84nAM91+VyzJ/PbH7gkIADJXgu8h7/6Ybj5gYhQ2Qfub4M9zV5tH+1966UM4J+5a/rE
bxzmuuDx2VJRyMbFy/sc3/d34TXzCXK7pyz1K8GqEkLovwTrSggh9Jow8teeZ+6IAQDYNt+e
36Nb37Dl5dKex6/JVFxmu3vEn5p4MKe+MfJb6ysRYVGcFN5fX4kIi+OkULmeKqmI8zpUdmuq
9V+bGjSwddu1VbILKJpiBOmn5u1bFyQD4JqN9tiw0NHZTFWFS1MUyJLSFSgAadZZn5ezNi2K
cIm865/gf+3ZyQf5QgCQVW5fXL39adV2AGBK4hPKKoOUJmWn0NYmRrR8u9Y6FenhSZXjaJIf
kZouZ2aiS8PLyi2y6IDE4n9zUih518GmhXcvR0mByYq8HTNm0ACNLdtzGY6edSd4sTu29N1f
/GvfLt+ujU5FWo04U9LlOpno0pBSx7irIiNTWNneijIxyMvxGz+tgaJq/5734klOl7Ooiqc5
jvu6y0UHvHo7/0RUISEgFYkYYYWYEKlQBHJ8DgVc09FjNyzs7mymXt1PUhUaf1z5dto6FSlv
t8uyul3lGZkV1e0S/bt21f47jdsu3+r+n3xq3oZ1QTKwB5Bl7h9Tub6SjuvsKf/z9Yxy2f+g
JPvkTzOurTFzdbV07un4x6URc73+/GZ+UNWoXfRotOJ3jTnuierjJp2at35dkAz4dY3noyJz
KxMkikmKA6cORixIbmwBz8C6E7zYHVnaiL6QuX9M5fpKeq6zp/3P98col70PSl73k5fFb51H
XZ2KpBrnMSFdztZEl4aXHLPRkzcs7O1splHdT5IUKFrHRIefHhpVmT5SFhmWJausK3EMPxAn
z2z0lA0LezubaVbvJ1GBApCmnfUJmbVpe4RL4F3/aP9rd04+yBY2sW5SVt3fSEWZCOT5fIrW
7aDHTw+OqDrN5dGRWbI660ogzTz507hrayxcXW2dezr9cclzrtfCb+Y/KyDFVw4/2rL/u29V
Hp/nuYzuU3LG/UUZAMhSz/oEzdq0K8Il4K5/lP+1WycfZH04flrP2qSVhtU/hW7/vKk6FiRq
0QBEVCGucZ2Kq6/TDy8ixbHZFL13jiELAISnf9MYdVtUX4KKb9303715WNCq+Znkh6rzrq9T
kVDjvMelyznUuJ+zTX9etcMlfE63o5Gi5r14eWajZ29Y2NfZrFV1f4iv9/5Tc30lUpH3sv5r
SBodEFn8Vv47ttKw/aewX4385ydq0QCyD9zfDHQqXoUnyarzE5su52iiy4KXMpAk7pq8qV/Q
n1Pid3T9M6QMf6FCCH3xai7UXXOtJawrIYRQPb9mVySFpoaIAAA4CiX1L9RJhGlR6WElaWHT
ZabBkzY8+3Pq9XpmwpWkpYWEFJP6t1PV79XERB28Hxr0zahTiQ0ZOPr/tWHaqRJJRVlGiqBY
CgDAsR98+kDn0Dk7LI4nZpQyahPmp66g6MqR5M6NJtfau7ma9vjOafMvA0ZMW+7uncuALHrn
BpNrJm6uHau3/+HunccAAEWzX8/vYdEsCqo+IXU1uqJC8q/+bKtk7t5bwVBpacl0AACazZYW
2WjvuJUOAB8o2XxgO1V7nG9vo+ia30ve+Y4mlEFEaXnZlK2B3vtL/VIfzlszHPdNn64l/6Ty
H6lR/OLYjzx9oGvonLUWx+MzShm1Ccuq+0mjK2mfpF0f6v9Lpp0SSCpKM1IKKvs/G6B6fSUZ
QEpYlLxL6syZ/Y49OFkOQEoSo855RZ3zOrlm+G+Rh0aMWB+8N5M06bi/TTtVJKkoeX3c9/pV
nSepac2lGpu/yvWVZADJYVHyLqlzZ/bzfXCyrLqfiEkDziPHftzpA91D5yyzOP4yo5RRm7Du
dT8hUln1uJ5IpTJSZ5wc+/GnD7iEzvm9ej/rU1fQdOXIf+evJtcs3Fyte3z33eZfxo6YNtHd
O6tJc6ze6W9UU/sbU5IYds4r7JzX4TXD/4w8NHbE+oC9maTk9tVzwjVj+qkGKH3XM/PWKn9x
VeVi51yTa5ZurrY9vuu3+ZdxI6aNc/fOrCN+WbSPg9XO52/VRDi9htR+ndZ5eqPXfTvSiwsA
wBTnNmShaVLiv27q2qtpd7IZlQZcv6DYdZrvqjYnv194LJVp3kuXYz/t9IHeoXPmWRyPzChl
1CbsrO4PdZ6YwvTQkBhRY66higrRO/1cFr3PwWrLc2mDd/LB/FBqFtYdeRJiYGWvwwpJ/PLX
dkcIYVHprelvdZeWcH0lhBD698pebt1VOHK1qxWn+ffNpAfsvakz+Uf9huy7NCMzIjI9JqGq
qARAadgZGaYEbvGJTy+VEaA7dGrNrjmsSIg7u+/SXI+/Jp2A3oNMFN5sjz2779Jcj1WTTkDv
QR2qtlOK5hZqlT835Mz02zG5sUlMeUJ2pryepSFddThzfV1Rzqv0ekYdMhkDbBanAeM8xW/s
erOCZ3dZZGOzyMZmUedxD/K62PXVokCSFhpJOruYKL47uKp9e3lCZqa8fo042+qKsl+lM0DE
5SKOvFxlKHRrHZWG/GCUyUgD45cEh9zJ1xrgbsirJx6Dqng+D0rDzsQw5fEWn9jqfqLNfre9
7Ia0tzwhI1Pe4O12ZX2qdpHSjLSIyJSYhOrizvukEjHhqKjy3m4KKUrJFdAKKm+WCua1atva
oDWfbuhxUyMik986LhG93a/U3uyKUjLrpFn5Kc/U0AQyYhOq3wlALBUDly/XkBpRcmgk6ezS
SbFpqZKKxYSrosqlPnge0zLljWqcR2NdUcardKJhZ2aYcm+LT1R6qYwAq0MnXXblXSo2vVxb
26Aqcq5hO62qtZ4kSaGRpLOLueK7/e2d/eixa9ZxEsLO7jsy12PapBPQe5CVwlv3jQb1ww/e
TV+mlusam6tV7kLetFMD16R63U+yBLRiVT+pCDlyUuA61uOnMVbxx28ESWrGH3p238G5HpMn
nYDeg6wVPngdMelhrwoNrJ2bZw17UU5CUkxMUkxMUmxGWcNqJKLI8ydPPH/zJ43yhJRM+XY1
zruJriit8vqlWrlsPjJKunnJgptFDaziELFEDHLv92cilr69ndKwszBMubnFJ6y6P7T9JH/4
ZtLDYgsNOjc8/+UJyZnyJpaGrOr8dNAVpb5KlwEArTtg157eMfPHjrncfp33ODMuIITQV1RU
qrmMdyPqSr0/AFOMEPrvofhtLfRtrNto84GrqWVto29lJP/eUIQkHL1326DX4qGKdQ95lPT0
bGzaVn1Ya2vz69kOAEDKr+0J4LtZGLGaED0RxGXnabfv00kOgFJ16LtyfKuq3bB0x60eOqGP
vqG2ipGjo0dXuaTIzIo6tgMA0I5zxszo3sbQ0u6v5Y6sm48uZRNJ4JOjsXqzN/d3NdVs79Rr
y5JO+ace3q5nDgApScot0DYd6KSqKMfh1TVM5LkMtlIKDDoXkhETkxETkxFx8fkDSUf3bxUp
JufIpmfgOclnnrWloYaRleXU5b06swGqtk+u3m41dXnvzmyQBD4+Gqs/e/NAV9NW7Z36bFli
nn/qwe0yAEnK8zBODw+b1izgGjjOGqXdgPEMKUnKKdA2G+ikVl/8AKUha/4MbzNv3pEFjl0t
DBxduy/cPbQPFySBD4/Gtp29ebCraav2Tm5blljmn7p3+7PNnSCCuIw8bdPqfuK+cnzN8TYp
Scou0DYf6KSuKMetu72SwHtHYw1mbx7qaqrV3qnvliXW+afu3v7Mc0I4moZ6pqZtLR3tpmwa
1Z+d4PeoiN1zwo0zk2d42DpatLX5xnXdpr6GCcF+idX1L57D9qjDLw990/Q3dJIkPQ/j9PBw
aM0CrkH3WaNq1k1ox9lTZ3TXNTDvunxVH8W7t86lVY3TZXGxIRUdRk6ybKej3lqNV9fBmcwj
mx6A5zyfeQ6WhlpGVvZTl/fvzK43D/qmpgaWjg5TNo3tz37l9+iDBQJJ4O2jsUazN490NWmW
04gAACAASURBVG3d3mnQliV2+adu3C4jgrjUPG2LPp34ALSqw/crx2tX9pPyu9dPCRx/ntZO
AUDB0n3OYKWqXzCZjCOb7oPnfJ95XSwNtYysHKYuH9iZTQRxaXna5tX7Gfl6P8AyHLd64oQ+
7Q21NYwce3t05SdFJle86YeZBdo2A500FOW4PE5TajHld6/+k2O/eOMAB8PWFsOnLnCrZ/TP
6Tn9xplZMzwcHC0Mbb7pv26Tu2FCYHU/kQT63kzpM3FR14TjJ6qfTmEZjVs9ZUIfE0NtDSPH
Ph5d5d+OP6NA23agk+br+IX3Tm4L6fjH0bljnQwMjNs7D/ZYf3RKn89XkpAEXjsa23725nGu
ptrtnTy2LHHMP3XpdhkA3Wbs3hXDUvZO255IK8orKsoryLHqvThkcVEhFZ1GTurcTkezZn+W
xUW+vZ0I4pLztK37dJIHoFUdxq0cr8f6JO0V3ju6LcT0j6O/jXUyMjDu4Dx41PqjP9eRf0ng
paOxJrM3/+hqqtPeaeSWJV3zT52/XQbAbjvZa2n3Z2uneYWe/+WPf3RnHvzNnA8IIfSFqnWh
7telpYbWle7WCbOMEPqP4ZqsvP9H8IsZP5ux24weHxi8PGCHrcp7v1CT3ODdJ6Xui/tY1/VY
Eavbsl+DglcEV348nzXbgq7eviAoeGVw5cfz2bMt3vqlWuh//0Ao07S/aAv9zk3YUO55Y1N6
wrp7f6me3F29LAYRlcu3m7n3t7CkrZGXB+jc9Bm5Jkn6ZvuisKRtkZcH6Nz0HrkmseohDKbg
5IH0ft5/xgRM/i7z8sipjzMZAHHiao89x+gex4I2RVweqOd3eMj8sHr/nC1+eOVXH8moC9uL
yg8VXfpG60MDFLkOg/sqRN17mf16h2Wxd57SPdyt1CiSc9bLddwzjufUR9Fbg696DuIX5zEA
ULn9Kcdz6qPobW+2ixNWe+w8Rn9zLGhbxOXBen4Hh8wPKSIATK7PghPBXafHZu4I3Nvh+ZnY
hswfET+89KuPZNSF3UXlx4su9daqswDwau+m3j895/8w5cbzdbd9v+/HKcyQAYjjV3tsP0b3
Oha0K+LyUD2/A0PmBxc1fkIUbTz4keg8IaevTVRW81wqJOeJeMNvHenG95PjEzaUed44kJ6w
+95f6id3h4reau/5X33Eoy4cKCo/U3TJTYsC2njII9ElQs5dm6ii5rlMSC4R8ebfOtIgfrXa
Y9Mx2vVY0L6Iyx56fnuHzH9R9HkXsGXpTDuzNzpqb9DdhQstUtd7rN4UxcjiI+4JjCZvWHT7
xR7/s+N75F4d4+5b37r7jcFk+SzwCe66IDbTN3Bvp+dnot70K6bg9IF4t/07Yp7/NqTw3KjJ
11+v6k4Ej5b87MefvvZl2qnk431aUUAbj3gkukvIzWsTVdU8VwvJXSLe9VtHGoDknN3sOu4+
x3PBo+gjwVenD+IL8up+LIylO+3Mwegon6C7SxdapKz3WLEp6sPfIH652uN/x+h+x4KORVwe
o+e3bcj8Z0UEhH4+EzaUet44lZ7ge+8vjZO7X1T1k5LnC0ccyBi5PiHjTPDe9sFXk17Pics5
u9513D2O52+Pok8EX51ZGafQ78CEDaWeN06nJxx7az9EVC5vPnPv1rCkc5GXf9C5uX7kmjfL
5ogfHvvVRzTqwtmi8ntFlwZqUUAbj34kekLI/WsTVdU8NwiJPxEfqKv/lz5fNGJ7gPm0ezHH
Ls0QHTucKJUxzIf7pyw++J6g/eQNq26/OOZ/dmqP3PNj3Pe/7ifSiBvHwigm4Obp+NenUFgu
bzFz746wpCuRl8fp3PzfyDXRNeL3/dVHNOrCxaLyJ0WXBmtRAJJXG91nrYjquOz80dhIr3/W
fKefEp/8GWdQiaNWe/x+jHY/FnQp4vIEPb91Q+Y/LiIAbOMe3dU1ev8aXOhfUuJfUuJfcGu0
IQ208bhHojBCXlybqKbm+beQhBHxsdf5J4I7S36+xp++52WaX/Lxga0o+NB2od/OCRtKPG/c
TE+4dO+vVid3P23a8k208YRHoihCQq9NVFfz3CkkUUT8z28dP1ykksRudP9pRZTpsvNnYyN9
/1kzQD8ltq78iyNXeyw8Rg87FnQr4vJkPb+/hsx/WES4FnPXrLN4PPvni6kMkMLHi346o7Rg
3UoXBUAIoS/S3bt3a53v5jna80MVISpuyJBz588DwAJC/Pz8GnikQ4cOHTp0aN3r8VR9r2/I
b5SkBbwAw8DGYhjYWAzjA1S7X0z3iP/ul3mPZJhzDOMTHYVSHH/x0PSHs53Xp8sw53jDb+Yw
2D22nb6ku1N/+K3iph1FznZb5BbTdSP67ctl8NRjYzEMzDmGgTn/ssNgGl8RevMj9Z2vAUII
IYQQQl8jVif3gSaZzx9HFXAt3BcM51ybF1jShN1QXOVWGlaTpoxVejz9TB6DeUUIIfQ1aHJF
6E1diaIozCNCCCGEEPpq8du5/Pn3TJM2cpKsuCubl8w6JWjCNE1Ka8Cp5N+650cemPb3mXyC
WUUIIfTl+zcVoTfz4OqAT4hhGNhYDAMbi2FgYzEMbCyGgY3FMLCxGAY2FsPAxmIY72iWNzZF
CCGEEEIIIYQQQv857JiYmJj6XoSVPAwDG4thYGMxDGwshoGNxTCwsRjG19pYhBBCCCGEEEII
IYQQQgh9UlRWViZmASGEEEIIIYQQQgg1Fq6vhBBCCCGEEEIIIYSaAutKCCGEEEIIIYQQQqgp
sK6EEEIIIYQQQgghhJoC60oIIYQQQgghhBBCqCmwroQQQgghhBBCCCGEmgLrSgghhBBCCCGE
EEKoKbCuhBBCCCGEEEIIIYSaAutKCCGEEEIIIYQQQqgpGlRXOv+bx7cD3d98DFl4KoMBaeaT
c5ee5zEgfbHphx+3BUs/dqzvhuE+fX+s7J3XMBnn5wxfeiGvRnjN7daq0cM3P6t466j5l5Z+
P2Z3qPijHbSRiRo592zmW0FIo/dOHvnXYwkAQMsIstEnfdDQQWNnLTvyoomBf9Re+qkuAQDw
nj7sraug6pKcdzSZaYEx19MVW0A+EUIIIYQQQgj9G+wGvqzDD+v+GqBVVYWiWHIKNCmOu3/5
qoK+q73Np4v2nTC48qwPvZSUVoenyY09Mm9x+gjfRS785gjCwanTzoOBEaIuDrzqYxUFPY1V
6OJhxil9Wn1Qfos95TUyU2uQsuZNV7OddJkw9+WNnVu37tL/e9k3qtR/9Yr9YcOh4QwBYNIv
rVwY1mP7kj4aFADF4ings4cIIYQQQgghhD75oL2hr+MpKCsrvzVyVe2x+EAPAIBP+FRBLWF8
APU6PJABI5XImu3xHJXOXc33HH8aI3Gw5gAAACkJDozk2w0x51K81wdtuWpk5gOaNV3Nd9KV
lbuOGt311qbIJNk3Nuz/6hXLU1TiAQAwxTw2xeYpKTXsekAIIYQQQgghhD7GmL3p3yp9sWmC
l+LSHVNN3trMlMZe9PK++CK5kNXK/JsxM8Z21eF83DaQ8lcX9+6/EJgkkNO3sZQvYGqEt2SN
4ampW56LCWwdOngrx27mpeV9/uXhKFU7J7P9/zyLk1p3YgMAlIcERMh1nm/Jq5ETM3YteWAX
3fhz2mnj1Xs8jVkAUO7/v4kbM0f8vc1DhwZgsi78MtO/+47/ebT5yHWCN0GS1HuHdv3zMCpL
yFHTMR84felQbb8/J9VM19E/+ihLMh8e9T7+ODqjVE67Y9cRk8f21pcDScCGn+6bzzENP3Lx
WbqmmWFycttF3jOsuAAAJP/6iikPupz9X//mDl0mkjDyKvJVDyuJawusju3VxInnliy5qDRp
ze89UzZNOsP7Tj/tYWBcIa1tPXDa6HavLpy6+jw+n9buOmr2vP5GPKbA/+C2Q48SMgvFPC2T
Hj/MmNZDh/1W841/3uNWy85dNTLeTu/KYR0+7pltakIAJKmfONSG3y6kLzZNOFDW01wU+jwq
m9Ho4Dzm5x97f+x7CkIIIYQQQgihhmloXUkmrigrLascz1Nsnrwcu/aJSEz+rU2rLsiPW7LT
Rbci3Gf1lrWKOttHtG22ukLNMFhcPp9DMwV3tvx5qKDXvL9+MeVkhPidjSY1i0BK3y0/bnRo
1q9pI/9Z2rN5JnZRql26dNx7ISBuYiczNkBFhH842262hVx9edgyQs/O3mT37aCMH4z1aRBH
B4VVMGXBYYXDdDQoIggOStS3n69FN3uiAABkFeL3nkBiMq5s3v5Ma+rSfc5tFcqTY4u12O+n
ixQ93LZkU1q3eb/PdFATBBzbvGXJ36y/f+2pAKTiyd79vClTV07WU2RCd0095B8lsbLhAJDC
Z/6v2nef1cwnXVqa+uK074tWvf4yZtURmEpx7dsVq1td+OzvNSfL3Jau6NOGJU0BcXJ8+eCZ
q8ZpCUP3r9ry2+8dhk6ZuGaCZtGTPct8Dt7usnyAhrJht6ELBpu0VaUyb275dddh886/9eLV
bL6SokJsyHs7pzLOv5Pej3spNzUhtfaEZoyrrq5Y+2XSlvXeXSWrvO3oGUPnqRc/8926ZRVf
92/Pjmy8eyOEEEIIIYTQF1NXkr70nefhW/UJ13HuiT96KdZaVkq/ezHCeISXq4kKBSp2w13b
TnkYBM1WV3orDHbH8fs2DNPJf3I9SGnAGk8XYzZAqz6uiZcvBn7kpNHqjl06+lx/luxp1o4l
igwIBptZVnL15iHLo622vb3xwWdB+cP0WzGxLyI0evdp7R8cWvZdb4Wy4KA4bYcJOnTzJ6oK
xX1n8hupKC0F9W4Wxq0V2aDYsXNtxQQm79GFp3L9Vv3Y05ADoPLNpMmRgauuPClwcQMA1d6T
pg+05AAAsXe23XPoUfREGysOKXz+6GU7l9nqH+Gk04rtXbUoEQNs+EBg3R2e1h7wtwAAIEo4
vW57oN6Pm8ZZKFaVOuRNunTp0IoN0O1bu0MPCgZM+KYDD0DL9RsLH++kTAY02NpmVUuI6ffo
2sH7fEo2A23fan7VVNC3dy5rQHqbEdO0hDS4J3yMrvihy0T3nX1Q8h179HPpxAbQ6T/l+6dT
fG9Gju5ojYUlhBBCCCGEEPr8Grpud6eJOzYP06636MHkZGeLwnb8OGJn1YBVxuhaNWO074ch
TU9Now3dDT/pIJPWcHRud/hmQNq4djqRASFS68k2/PrzICRAt+rsqHciMKRkcO/85+Ecu5/7
8xJWvYgS97KMfB6tZj9Cn/WREiWN3jttRe7bL2IZ9vGw89v56/xot4HD3HtZatQyt4hJT05j
tx/avvpLXBMLE+pJSuU7fFE0q6o2Qyl07mmzd9+Tl1OtzEsC/WPbO81Xo5v5pDOSsoKUoCve
2//YSm1b3PsDgUl0PhwwqQg5uP5GulB/hFGrWvoLJSfHBYapepiG5vG5MqkEAJjimOtHzj4I
js0oLC8vl7QyrHoTwjfNh9p23pD0NiOmCQlpTE/4GF3xQ5dJHShFA2ON0qi0IrDWwNs3Qggh
hBBCCH12zV2O4XJ5cs5zjvzqwvtULWAYAgz5xMtM0xpduhl5P3ie4WH27IXI5kcrhYbmQdvB
vtXpF+ElpllBIquf2rdl28jfCnlVwXkRxrddbPxpH8FgafddstMi8Orpi2f/mH7OYcrShW56
70ZACFAU1KifUBRFvT8HklLo7GIjPOAfPVE340mcidMs9WZfJIrmKGi2c/Gcnhb8i9+L4l5a
HwisjoCJKLPEbPLsrtcPHLn+7YrBDVvHSpZ4ZunKB209Jy2eoKepELl90onaX/f+zt9L7xI3
vY94NknjE/LhnvBxQ633MpHWecEzUFsXRAghhBBCCCH0GTTz6J+lY9CWJMQkfrq3iKN12+oy
yXHJ9R+RNOthWzt2NU4JfOL/LLDMoruNfIPzwDKwt1WOen7/aXCBpV0HNrtdZytZ+IvbgeFU
Z4cOn35mDyWn5zhs7l87do/XCjh6NUr6brpo3ba6kvjohOovSBKjE8DAUPf956oUbZztRIEP
A54+imvXvYvax1p7nMgYhohFkg8Fxq0jYIrfbfJcD9fvJziknjgaUNygDkEKo0NTDPtO6GvT
TkdTRZ7zwYJGrTt/O70f/UJobEI+3BM+Te9rwu2CESS+KlAzNlDGezdCCCGEEEIItQTNMvzn
yXGFOVmFEoZQ6l37OVRc23PwYUqxWFKWE/f0QaSgGcOtXAO4tPKjrELMAK3lMqBz8TXvk89z
KqSiwlehsfnvPrtEcblcJi0urqisIL+k2RLXxtHJIP6czwOBZbfOCu8WG2rNQ2Vc7Hb2dpyg
oxfTLe1NuQCcjrZWhXePPRTaOphyP/HJl6S9eBqbXSoRF+ekZBRJ5fhy1LvpYjSdB9iXXt17
5El6mbg04/Hh/Tek3d2dVWuprihY97AV3vc6GWXi3E2d+ggnvSg3NeKm144zmQaO1uqsDwRG
1xEwxVNVVaAoZacfRugHHj35UtyAg1PyaurclBf34wXlhYkPDp8Pknzohe/t/L30ftwrudEJ
eXPZfuJQG3CZ1IgNAEh5fEhYeplELHh1zetUjHH/gWa4uBJCCCGEEEIItQjNMTxjdxw4svNf
B2dOzVyxb6JZjzmrpIf2H10+bX0JpaShb+U+rYe5ajNF+/YawCyd7zfsmNxBtdfPC1I3bF05
+QxLRbtTF5NW8u8UNWh9l/5d7h38/acn2lYe+5YOaKZxfJtuXdsePJzuMM5WqZZ5YSrv58HJ
XJUGAHaHLjasSw9M7C3lAAB45g7mojthDl3NeZ/43DNFaYGXj23Zni0QsdWM7CfPG2bCejdd
SxcP6D3vL3J4/6GlU9aLlXQ7uSxcO8pRkYJayivytt1tyQN/0zH2as1ZVqo+6RTF4ilrGVp5
LBo/3IAFoF57YB/aLq156twmDbix6OCNfitb13t4+S6e8yK37lk29Zh8WztXe3utB/X1i6qd
953f6p30ftzTSTcyIfDmst07uOiThlrvZVLzljIOAFiytBtrZm1KLefrWbktWzxIj8ZbN0II
IYQQQgi1CFRWVuZX0RAiqRBRfDl8jOEzYrIu/DI35Ntdf/RTx+VvUDORvtg0fgf7V685tnhx
I4QQQgghhFCL89X83Z/iYFHpM2Oynz5N6ejURQ2LSgghhBBCCCGE0H9C/aWYbwe617r95uUL
nzLQFhJGHZF8lmCavSFNbwKTcf9estkAh2YsK301qf4qL4R/c/r+4ycRIYQQQgghhL4aX808
OPSZyRKOzVgcP2zv79+p4vNKqPngPDiEEEIIIYQQasGwroQQQgghhBBCCCGEmgLfVwkhhBBC
CCGEEEIINQXWlRBCCCGEEEIIIYRQU2BdCSGEEEIIIYQQQgg1BdaVEEIIIYQQQgghhFBTsE+e
PIlZQAghhBBCCCGEEEKNRZWUlGAWEEIIIYQQQgghhFBjsYVCIWYBIYQQQgghhBBCCDUWrq+E
EEIIIYQQQgghhJoC60oIIYQQQgghhBBCqCmwroQQQgghhBBCCCGEmgLrSgghhBBCCCGEEEKo
KbCuhBBCCCGEEEIIIYSaAutKCCGEEEIIIYQQQqgp2B9z5wSAwhQ3UyYBk4kQQgghhBBC6F+P
LSkpoaQyIIQAAEVRbBawKQJAcMyJmuAj1ZUIoUi5pITH4rMpTosqiBBgZIyUTXO/kLIXoSgg
4kIAoLhqlVc99lqEEEIIIYQQQo3FEBBKmMSMfP+Q2PBXqQXF5QCgoSxv0V6/m00HIx1NPpfC
ASdqLCo3N7e590mAIi8zIh6F3rIwtrM3dWYx7BZSDWFAll2YUVJepK2hrySn0uJLS4SiSLkg
+cVDXwCwc/lBXtWQEApLSwghhBBCCKGvBak5PsV0fMThMIESofTmk3D/sHhNzVZKivJWnUwA
ICwqrqS0PDcvt6uF8XfOVsp8No3nATUGa+HChc18U6BIePKL0/cOpuUnpeemmBvZKnCVWsgN
olRYnJgZVyosKSkvkpPjy3H4LfjmRWiayU8PC37kqywPPA6Jf/lcSVlDQUULS0sIIYQQQgih
Lx1FAU1T7/iymkAa3tgWEKpISq4/Dg+ITDEw0Lc0bReflMJIRQKBIDdfYG/TiQFWVHyqSCRq
p9+GzcKnllAjNO88OEIoJjQx8GbgOcJi1FU09NoYyCvIt5zWcrlcBQVFkbhCJpOkZieAFqgq
qLfIp5YITYnTXwXEBF8yaKunotoaAJQE2aH+x01tS3XbOTKEi6UlhBBCCCGE0JeLoqhl3jMT
s2JZLDYAyGRSozYdVk3cUbnoT8vHAJVfLCotF9YdMEVRivJyGso8Gj5vu6jEjLxnEYlGRgbA
MPn5Bbn5AmMjI4qicvLj8/MLtNSUdLWsnwWFmbfXNzNoBUCwi9ZB9txPcngDXVpUfz9RUOJM
WMyy6/kVZ6MZ60oEKBKe9OL2i4siWYU8X0FPW69/92FKMrXXlxkhn6WCU7kUGQ0AciwFI13j
5KxEkUgkkYrTchMBQFVBo4WVlghNKpJiHiZE3TY1NSOEiol+AQCGxqamHTu+DLkoEZcbdnRh
KD6WlhBCCCGEEEJfJgJA5ZVkmRh1pCkaABjCZOVkvv5Sy2+AhKG3HL4cm5xF0XW9zTphmI6G
2stnDOdSss8YrZRQT8PiW2mqt9PVEpSU9+piGf0qya2LKQVURGRU/542YgklxyOKCvJRCZkm
bbU4FNaV6jz7hzfQpUWsNvrs1vp1pT0rBbLTJIfWYV2pYTcFikSkBF17dkbMlCsqKhNCktOT
95zYWlEmIoRRUVAf0Xu8vrrxZ2lkqbA4Pj1WKhNTFEWzaIqmKIpiszliqSglJ4FuQyvzVVvO
7ZUFwpdh19NePexk0bmstCQ9JQ4oAgDxsWH6BiadOllGRVwXi8o6WveTgRyWlhBCCCGEEEJf
KD6fr6L8ZixWVCL4goInBIQyVitNTS6XU8fLxGKxSMZiGADW54xWxlAxSVlGBrovwqIz8gqD
I6JyCopXbjvEMISmqZLCwpJyYXhsclc7K6G2Oo1FpfpUPqnE7+qmPPG3Ol5W5LW67NLhhjzW
9EVrtueV0gqTbgScEzFliorKNE0DAIthSSRiFg8IoXJL00tFxZ+pjZRYJhZKyjgcLgAABa8n
7rLZHIlElJabbKTN5XPkW0KNhqalQQ+OZiY9dezaJy83Kysjgcfjc7k8AJBIxKlJMa21jSys
7J8HXC0rKbDtMZ5hOHhJI4QQQgghhL7IwTlF1/FpC8fjkEmjB+UXC+tei4gQ0FTh8zgEmM8Z
LcMwgpLSTiZGqRnyRsbGfXpYbdhxYun80VwuhIXnCqXkyMX7Sem56TkFE4a50Z831i+HTJBX
T9rre8HXodnqSjSLkpPnSSrkWDSLoihCCJfD5XK4lT2YRdM0/dnuETRNczgcDudNCYYCigCh
KIrFYrPYdMtZlIxh2A69p7FYM3JfXU5NvqekpFpVDgOo/E9ayktdA4uhUw7LZIxYLMErGSGE
EEIIIfT1arlz4ihCLHW4lC6v/jYQwshknz9gAKmonEiELEpKlRaLhOVUUTFfnqWnLrf3+OWC
EpGmpoZIRknFQpDjYs9r0PhdkA8AZdeOF/usf+dLKlOXyfcZhnWlxtFXNerXc8jdgKslpSU0
TTMMw+FwFOUVpTIZANHS0FJRVPlcdyIum6uooMQwVTVXqVRKgFRe3nw5vl5rAz5LscUsDkeJ
xVKKguJykJPjczhcqVSqqqYBAILCfA6HKyfHLy4HJaGYEMBJcAghhBBCCKEvEGnAC1r6YEfC
UMcuPXwemVD329gRQuzNjccMcP68KxbRNK2hrvYyMV1QXJqRUxAUkyplqBfRSe31tfacvJ1f
LFRSlDc21O/X0yFPkKuuxGPjVLgGYIryAYBWVCHCcuUJCyge//WXuJ3sAEAmyP8v5KG56kqU
TEY6KFuBI3Mv8KagRMAwjI6GzsCeHhoyfQAgBCQS6evKziemwFU207Wp/H85FCWnJ4rEIgJE
jienq9VWkaXSMt9xgKJoiqIqhGU9eq8CgBtH5ysrqVIf89FQQkh6elpBQZ5IJMJ7BEIIIYTQ
V4nH46mra+rq6tU6GBYICpOTk8Ri/G3wP9QfDAyMVFQ+0YKzNF3Z66r6Hpv91oC08tOaM10Y
puVWNyRScv1xuKqqCodV1+IkEonk1rOo7/s6c9ifM1o2i5i1N8zKyXWwMReUVHzX0zwnX8KI
yvacvJYrKFdRVmxvbPCNg0VkRGSZUGyir4HvB9cQlfPgaFVNAOAYdmRptnn9JZamNlQ/0PTV
a8auTUmlpIOyNXEgfgE38gvzX76KKc49PKLXRFU5jeobx2cpOVOEEJmMAJAKSXlCRpxYJqJp
Wk5OTqeVviJLtYW/i6VELBKLJJX/+djHSk9PE4mEjo5dFRWVPmOTIyMjzc3N8SaFEEIIIfQx
lJSUREaGZ2Sk6erW8jZGyclJlpZWWlqtMVH/EdnZWZGR4VZWtp/kaAQApm4aXiosYbPZCnx5
nTZ6Nb+sqKA0Y/vwsopyqVTaSqX11plHWvJTS1wu/W1vl4jo2LqXfOFw2F3srDgc6vMWalgU
cbRsf+hsYkxcgoqykiA7z6iNyvr997MLytRUlUyMDXp1sYxPSLz/PGriiL5smmBZqSGYokIg
DEtVAwDyV0yu+aXWXndYmtrM175id6XmLZlSUinpqGxDd6WvPjgvkYhyijNLRUVqfM2WUbuh
RNIKkVRIUcDlcPVbGyrQKi22qETTNAVAURQhVQ95EcJUrjf+8VaqysvLdXJylpdXwBsEQggh
hNDXSklJydLS+unTx7XWlcRiERaV/lNat24TFPT8k43IAKiFM5fuO7pDXk6ew+XxeG8tTsTn
y+vpGEjEojJh2ZwfF7b4sTQzZYA1Pbhz/dUHmUwq+dxr4xJi2Fq+m72V/4vwju0MhGJZZGyG
U1f7grInRm31etibx8UnPAiMdOlqZ6ytBESKl0aDMDKmWMDSbqu+dBclr0TxeAAgaGYiaAAA
IABJREFUCn5ccnQbraohK8oH8p+ozzX7o3iUVEpMFK2GuvEeB/kZ6rTX1tAj0hYyOZYoK6hq
a+kKxeXamrp8UG7Jp1gqlVYIy4CixCJhZV8Ui4Tl5aUVwjKp9GNd5BKJGItKCCGEEEJfPQUF
BbFYjHlAn2EYzpAO8vYzJ873PraHw+GwaFbNr7JoFofDYRjZL1MXa8s6SqUt+l3JGAIxidl5
gpJ6X6mpqmSsq/553+uOAuBRsl727dRUVVurcF+ERj0Lix3R/5sfRw6SY1PPg0IDI+Kdu9r1
sm/HoyT4sFIjukFRPltFvXDtbJVpf8h/NxIAJHHhlByf4vGZ9MT/SBI+xhRPSioleqyOHs56
tIwLEk6LeXaRohm2tooeoRia4RDSopeCa2flYmpnA0ADSCsq+ADw/cx1AGwARiJR+mS/BqyM
rNgSKyqS1Liv0DRUrvFEGKixYJYKh5rXgbfcnI93FoQQQgghhNCHSCQyA7bl5B9m7D+2W15e
gcN+sziRWCIWi0XTxs3SErevLiq13FGbhKF3nbiRnlfMZrHqeJlUJtPXUl09ZzSP/txvCUeI
Ii1xMlNLzS6NiE8tFTEFRSVdLHWfBCcSFm+y5wgDDeARyX/kEZvmIhPks9ua0KoaRfvXVDy9
DYSIIwJpVQ0AYAQF/5EkfKSlwyiGAVpY+eRLC7sLMCwKWKQFBvbW9Q4ikbxYrFD9KQGAsjKd
mp9+GltrFpVoFkhEkJsBghwAABUt0NABDg8YGQAUScjWWNE7dSWJRFJcXJyfn5+ampqUlEQI
MTQ01NbW1tTUVFZW5vOxCIUQQggh9AVITk4ODw/PyckBAC0tLUtLSwMDA0wLajKplNFnm0/1
nOnluxP48pWlpcqi0ozxczRFxi38SaXX5JXUNBk2q+66klTKV1KhWsjokxBaJsvMKejerWs3
eyNlSgJicffOxkBRlFRKGAbfcbzRBQZBHgBo/OkjfPFAFPwIaFp53HyeXQ+oXtX7v+CjLkmP
ffJfZa9G+YgCgHc+/TQEVUUlCoBA1CO45QMvn0FJIQCAoip0cAS3CdDJGYAGIALJWwUvX19f
mUymoaHRqlUrIyMje3t7AMjPz8/NzU1MTMzPz2exWGPHjv2Szono0jjtGUpn4nf24n6e40ef
2X5LYeTPfduyvpycNW/M5Yn3z18LTC6iNDoPGesgDY1jmzu2U6b+UylFCCGEGutpcFRX205N
/vbAwMDg4GAAUFRUlEqlGRkZGRkZtra2Dg4O9QxgRZkht28+DE/OLZFwlNS0DCxcvu1jrvER
fujKYk6tPs0avXiYCf5E/2JIpYwO23T6hDl7Dv9dte6HWDRzwnx1ocGXUlTisJipY4cUC2VU
nQvgEoZRlmOxaWFLmVxGSFczHQAASVnVluq1n3AA3wSV7/jG1m+nqN9OcciPb38J60oI1bgX
wt3DcGI1FOfRFEXRFGEIiMqoJ2dl4fdgxCJwmwjv3UyTk5MXL14cGhqal5cXFxeXl5c3d+5c
FRUVY2NjAGAYZu3atZjaRtVAEqITuB2+122hvy8xGXf3+ub3mDvCnPuxYiY5gTcfl5qMmtFD
n0/TkpfnAwLkNG3bKXO/0pQihBBCjVMhFD0NjkpIyRCJJarKijqtNR2tTUOj44Mj45pcV0pO
Tg4ODlZQUOjTp0+bNm0AICsr6+7du8HBwVpaWnU9tURKI875nMsyGeDxk0krrliQGR+RIqFp
PE3oNamU0YL2M8bP2eu7g6KoWRPmq305RSUAoAjRVxBSivVXYwiREJxc9pUqPrxZGPRArnMP
nm13tn47AJAmxwmDHoiCHoojn/9HkoB1JVQfmgWBV8B3hWEr1XFzZ1hYWHC53ICAgHPnzv3w
ww+bN20qOL4KVFtDtyGVE+Je43K5MpnsypUrMlktE4llMhmXy8XsNoI4MTqB22G4XsutgRCZ
lGE+ZsxMSXEJt42RgQqPBQBcC485Fl95ShFCCKEGS8nIvvkgUCiqWoazQFBcICiOiktkmH81
mg0PDwcAV1fX1q2r3iSuTZs2rq6u58+fDw8Pr6uuJE0KjyY2Y4d2MWEDAKiqtzE0x9OE3u0m
UkYTjFf+8DcAiIWS2opKLfcZmspJJQ0sGOGjQF8ZRkGJLisBACIWioIeiYIeAQBLUxsII8vP
fu/Fql93NrCuhOq+/1FQJoDLOzXl6H1eXm5ubgAglUrt7Oz8/f1NTU2/69v3+PHjcGUXWLiA
olrNb+VwODKZjM1m11pXkkqlHA6ngVGEHFv7pM34ab21aQAQRZ/Zeqaw+/RJzhoUACn099n9
XKRSSswm/IsXRJtN/7Gb2pu7/cQ2pkWje5bfueyfJNN1HLF098YxJpXvgVoW/H/27jMuiqMN
APize5W74zh6P3pTehcVewdjb7F3Y0k0Gn3VqNHEaIw9xm6MJvbee68oIBZAQIpU6Z077m73
/XColDuaWPP8f36QZZnbnZmd3XludmbrxC7Tzt9LUpj7D1qw6bcB1mwASfSe2dN+2X83vphr
ZB8weeO+mX7V544qizu0aMavh+7E5gms/Xr9sOqXIU58kJ4cYf9Pq+0BN+avORXj8ceLw0MU
N36d+P3mK/Fg4ennpRV7rHDC4wsTTYiKGAjLvp85AxSxx1efl7pYyuJjkvMpoWnz1kGdXXQY
QBc9v3T86rP0vBI5S8ukWdvgrs46JMizn1w6e/NpSl45U6Br7hPUL8CUqXKjumQBQJ4bee38
rcjknDK2tpljyy4dXPRYoIg5tv6xuKd50pV7MTlaxvqpiclyGo4uW3yUadtz+hB3jcrHDACy
nGdXz9+KSskr19AztQ/o0bmZFqEu5aNrbrF9jQujnidnl5E6Ni2Dv2phyow9ue5gRIkMDqyI
JBkm7cYO0bmx5pzGwMmdTeIqHYlR98nucZtvsbz0c57FpBeRImu/rm2M0+/dCItNLyJ07dt8
FextyHoTVnpzeAghhNDnrFQiPX/tfpm03N7a3N+juUgoKCouPXLuekFRyTumnJWVJRAI3gSV
lAwMDAQCQVZWVq2PkWwOS16QV0SBds1BSnTpyzunTt99nlHEEFm6d+rZ2VmXCUAXRJ45dOFJ
ak6RjC0yd+ncJ9hNjyGPOrAizLKfRfyFW9FZpl/NHurBzI44f+ras5e5Ug19c6fAXkGuQgCQ
pT84uv10THK2hGng1LFfX38T/ArzswktyeVSzAf0eWGN/J/s7+VkcUHljYrsdFURKBFr9ByM
K6H/MJIBLyMhNsynQ5vAwEDltm3bthUWFvbs2fPw4cP9+vU7eeJEccJjSHwKrm0r/6lyvBKT
yZRKVdwnGjReycbe5Gz4i9x2xnoEyJPjEsspaXxCcUtdTYCS+LhX+u6D3BL2RbzLDvY9RVW/
QlCkJhQ2n7dx5lbj7DMLho3rpWkbvtQXAGh5ucBzwua5240yT80bOiqYax66zDdlw5ixJyzW
Hn/S31mU/+RhtiWn+qNT5qExbcdE995ybFs3o8wzC78e134049G+gSKgCw/PmMFbse7Cckcd
kVbGrt59VhdO+fv2uOaSp1cOrLpV+ubbj/KEyBdMu75mDAAFAF2UJ9UPDAoIFpTGXj1ych9b
Z0IHUwbfwDGgl5+pPh9yw4/+ffqS2GZA87IHJ0481+o2eFIzA67kVVqpiAFA56rYCKAu2ZLI
4ztPZDsFD+ppKyiJvXrk5N/HyYn9mnOBlkaeP8/q1G1YRz0NroCTdfnPndltZg50Ydc8Zih+
dnzn6QLX4MFf2WjJs1MKeZoEgNqUQZ6ZUewR2MO/p1Z57Pm9p8+FOowOsAueNhBWH4Xe04Nt
GACgiH2bwZWPhJscJ8/MkLboPrSjVnn8pX1Hd+0y8+/aeWhHrdLIU3suXnhsP9RLSFQ9PIQQ
Qujzdufh45KyMgdrcdc2fsotEVGxeQWF7/VD6ximwbQJ7Gi+6cTGrWlt2wd62+qw3z5s0QUP
9++8ze329Qw3XemLC7v27+PpT2prSBICI+fAAS3NDTQh58H+LUfPWdp97c4GWvr05Cl2j6/G
dtfnaXCLI/ZuPpbn0XdEf3uRPPNlAa9ipkVKwTH179NugEjy9Nhfp8+E+Y/1x4qBEHpPGF5t
GF5tMB8qwgYN/YOjs3p16NajQ7ceHboHdx/8zby/H2Y19AVY2cMVg4atDpM19KOjzu/dufuf
t//+Pf+06GO+pEoXRZ7eezGqhG5I7vWddji9SobJIzeO6rv4tuxTrSEEZL4EWRldaZa59u3b
BwUFeXh4ZGZm8ng8sYUFlJdBZmK10Z0ikaikpITP56tMt7CwUEtLq54HIbC1N8qOiy+kARRp
cYmabu6G6S8SJQBQlhCXpm1nL7Z/xx3sdKqNTCU0fQZN7NvSzsy6xbjVP7ZP2b3zZjkAAKHl
N3h8nwBbM+uACavnBb7cs+deOV2YVwDG7m08LUV8kaV/R2/DatcVlXxgw3He2PUrBroYCPWd
B61cM5J7asvhVAoACMOvV26a2NbOxEiXm3xwx2XjCSt/7O5kZuHRdfiI9mZvEipPjIpn2jmZ
v44Es02dvZ3MdYTaZl5d21gVPn70UgFAaptbGwk5DAZHv7mjiSI7q4CipWUSEBhZGIu4LK7I
zNqETwCo3KguWbrg2YPnLM/unZob8Dk8A+cuXd2ZMaGRhTQAgMClS5C3pY6mQEPF2LNKx0wX
RD6I0fDu3sHJgM/maJnYmItIqDVljrGTq52pNl9g6OJuw8nJzKmjnal0JAQAcE0cHEy0eHz9
Zu62mkwL33Yuplp8gbGHqwXkZObRqrIUIYQQ+ozFJ6ZSCqqlj6vyx5shj0LCIykF9eZfo1PW
19cvLi5+9arKax2ZmZnFxcUGBga1d7v0/UdOH9/RMP3KX78v//PIvaSiijHsVFbo3XjTtsHe
pnw2V8extbdhRuTzPBoAGDoWdiYiLpPBNXBtbqbIzMxXPoIKPIJ6+1vrCTV5zILH96J4/r26
OhsJ2FyRmb2FTsVXRBwzV9/mYl1Noam3pzWZmYG1An2pzi3o2/u3O2VvN5ReXzqg09ANoZX6
lCXXfwnu88tldf1l2f1lA0asi6jRCaUy3/ZYqcw3ff+O3Xv1GT199m9/n39RTL3d83VkQPkv
aPzW5wosnf+mRnSpGA7DViwNMiQVkqzos+tXr9wg3riwneiDvC9K6Ll16+jwZmI0gsnG11Q/
kAcPHl66dKlHjx4AYG9vDwA//PCDm5tbRkZGTEyMyj8xNzfPz8/X1tZWLklbTXZ2tqmpaX0L
XsvWTu9aXHypr1thXCLTJsiXlfHvi5cyF8uk2GSBbSt9hhbjHXeoJcJKaDu7muXejc6kWlWr
ji6uJjnhMXmM0SOnd901LcDr7qgp078dEWhWfbiSPObpc5b3NE9uxc8aPq28yONRcQoAAJLB
JF7vFhlDNp/mpOKqlCVGvSDtequMgXANDIVlydkltJWmJOXhtTtPE1JziqVSqULLQAGksXsL
24iz2zenePj6+7lbCBkAQBqq2KguWQWdmU2a+Bm//mimidiYiM7OpQEAalv7ovIxUzmZOaSR
f9VspnJqSblSPjNZTKq8rnuU2iNhsZlAv55YgmCxmAqFgq4jSxFCCKHPTXFpKU3TQkHF93mt
fd1b+7o3ScouLi5paWmXL1/u0KGD8m24V69eXb58GQCUi7HUihSIfXtN9AiMe3jz6tWtqyI6
jx8TaMyk83LzZXHHfp1/XLkXraD0baQ0AEGXJt27eOPRi5TsIolEIhcZKt7c6InXMalXWaRx
K8PaxhuTLDaTwv4t+mJ5eNtJDkXEyALclF/typ6HRRK88oiHcXKviq6E7PmT5wqHQW78d+wv
v+77U5KsxOiQc3vWzQpNXvzrGGdluq9/+/rKY/PxRYD/qMasyMDkCIRCoVDbwKbFkCH+xLOn
CfIPdrhMTiVsBoaV3jsaDMSgIcjJyRk7duzSpUvlcjkAnDhxoqioyMrKaufOnXK5HDg8MLCE
qitnWllZJScni8VilekmJSVZWVnV9ygIHVs7UUpcYlnui3iZlZ2xgY0192V8mjQlLolta29E
NsEOtaEUCiCIGrWNVigooGkamLZjDkeG/zVU/9GKns1dB++ILq++J00TlRMgSJJQkSDQNK3y
C0VZYlQcaeckVh0DoSkKCCCoV7f+3fNAat2m74jxU6b1dFC26qSOx8DJE3q58jLu7P1z4+Hw
bIW6jWqSBQCocqgEQbzeXpsax6zqhBuVcpOoPUsRQgihz4wGlyNXKN7Hi28WFhYeHh7FxcXH
jx/fs2fP7t27jx8/XlxcDAAPHz7Mzc2tx4McS8euxVdjv+lrk3X58rMyAGCxWByXwYt+qbB0
2a/TO5uQQKVf3bHzrtSu4+BxU2f+0L+5utu0yocKhP4z9L28rQuehiVXPMIrEh4/5bfv718e
GpryelPK42dFVh5uOu+8AGNF319kYOMeOPiHZQvalh3ecCROXvW3FQRcDCthXKlRFFIZzePz
SACgcu5s+3HcyMFBPfv2Hfu/9dfTKiqbNOXa1oUTRg4KHjh28oIt119V6TSXJxyeMXDYwosZ
7/SFgqIoKezayaMH/z1w7Pjlh/EFcgAAKuXWkZsx6dE3zx7ds//8+XP7jz/KrfhsWfL1A3tP
P1O+bgN0cdTpveeeFZUkh145fvTgP3v27Tt+6X5iEVUtkQM34qUAspyoO+ePHNi/98i5a08y
ypr8Pbzy9Bs7Fk8cNTh4wKjx8zdffikBAJDdX/b1zNW7134//uvgfsPH/3zwUUL4oVVzRg3u
F/z1tKWnE5TTF1FFz4+umjVycP+eQ7+Zu+NOWpO8WkcpQNwMrD3g9Zqy5eXlyriStrY2AFy/
fh0AwNIFLJ2rrQdnZGT05MkTFxeXmvMolZeXR0ZGGhsb17+iGtjZ8F7GPo1+UWxpZ8IgjWys
6MTYxzEJhI29CaNJdlCfB5nh4WlGrq4G1d9uywh/lGHs6qJLAAAhsA/+YcvFyPCl4tOLNtyp
mvlM++b25WF3I16HmyThd8OhmatDtYclpqNbc3ga9rRGycmSol4QtmpiIHRJekaRwNCQV/oy
PsvQu72XtaGOkMdhVHrgYuvatwweNnliB62Yaw+SqVo21kyWz9DV11Wkp7x6Xbjy9OQM0DfU
raPtqHrMpLautiLrVV6VC4ZsXMpNE1aqLUsRQgihz46NhSmlUFy9XX1Na5m8Cb7/9fHx6dy5
s4mJiUQikclkJiYmrVq14nK5Eonk1KlT9QotAQAp0NXhKKRSBQ2knpE+lZacXq0HQBclxr0y
8u/sZ2esJ+JzVH+DTOrq68gz03MoLHT03+3DG3n6mKQ/isimAACo9IjHpc28g/ya54aFZSg3
5T17km7o6WFE1tZJlMSd+2P2pGHBfb4eM2/z9Yx69B5Jkc+QXs6vrl+OlWMpoHeNKynKS4uL
i4vyX0Ve2rorVL9Da2sGAJBaVi37zFmx7ejh3at6a1zb8NeNIhrovGur/rc2Sjx00eYDO5ZO
+6q1Q6U+I5V3b+3P+4o7/zCro1E9I5u0ovytikUoJUl3Lt5K5zu3Cx7wVVtXzYw7F+8mSAAA
aNnLkIe5Bp4de/Vs28JKtzgtTfl6qSIrNUNG5aVnKF9JlaSl5WuZmQk0tMVOrTt/NWRg365O
zISQsCRp1USC/cTsshe3r4QX6Ht16tGzvbu5BlCNzb23Sspkb/radMGN1bNXhBkMWrhp/9aF
g40fr56z5lp+xVwwL0q9xv+8cfeqsbYJu2f9b0+Wx6hlG7esHKwfvn37xWwKqOwLvy86Kus0
d9Pufb+PNH64dumRpCaoIDQNfBH0mAR8EQA8ffp05MiRgwcPvnr16vHjx3fu3AkAwBNCj29A
Uxeqzt3IZDI9PDwiIiK6d+9eLdW7d+96eHjUfz04ACCN7G2YcTfuZ4vtzJkADDNbi+KIG8/K
rezNmE2ygzwj9NTRKzFFbx5sIi5diSuQlr16uHX6r/fdJk9swVKW0aOLV18USEszQjZ9t/yB
55QJfiyQRl08fj8xX1qWnRAZly3nC/gEQFn45gnD551KpQBI8/4TuuVtmTb3eEx+WX7MsXnT
/5IPmNLHsNrTEmk2eFqfom2zlpxPLCovzQi9dC+NUsZAIuOg2tCa8oz4hFypQl6SFnb+VoqR
j7c5g62pycyMfZZeIi1+9ezy3Xhla6/Ijn+emi9RyEvzsnJLKWWQT+VG1cmShLC5l21Z6NnL
z3MkcklO9JXzj6jmvk6CGkVEMFksOjstrVRSXFQmqXrMhKiZh2X+g/N3kgplCllJVkJsainU
O+X3EVaqmaUIIYTQZ6yFlwubyYiOTTh06lJmdi4ApL/KPnji4uZdh2Lim+CZ0NLSMigoaPTo
0aNHjw4KCmrWrFlQUFDtoSW6NPLkzkNXw2NeZuUX5qXH3Dl46J7c2deRTwCh2dzXSRJy/MyT
VyVyeVleytPHCcU0EBxNIetV9OPUYklR+uNzN2JVffNMaLv42OTdPXUzoaBcUV78Ki46uYTG
CoD+WxhiHy+d+IgnxTQAXRARke7o7iB08XRKDQ3NowBAEvUkTujmaclQ2UlUvO5ay7i2QdN+
2/Hn/F6a95cv/PdZfSJLOs6uxnnxCRXzNlXu25aUyTDc+5/ViG6VInrXtN67KuqVwK6zASGl
gEUC09jJQ7lVHBjgsO1IUiZFld06EaIZ9NuI1pZMAHDwMgAAUNZXafyBX9eEmI9dM8JFUN+R
rHTWozN7H72+mswCBrazZpUkRSUz7Dt5WokYAFwrL+/MlKsxSaWWdgAE18bL38GQBADa1FQ7
LCWttLkWn8pOfcWzsiZTMjKk9tYcaXpajsDUU5MgSf2K4TMiC7FeaGReCWUlqppIyfPYNK5j
Z3cLbRJAYGOb+zw69R1y783tka2cR57KunHsLqf70jFtLVkAWu3GTXgWsujUrZzALgAE397f
z8GABRDQxVv3ek7w6HYOHADDzu1ddmxLTKeo0ivHn9gO3NHJXosALe8BncWjb4TCQIsmqCOU
Ajy7wNcLYf8vr169OnjwYJXfaupC/9ng0wNUvcTeqlWr9evXd+3adeDAgdeuXVNujI6Ofvr0
6cSJExvYepraWxMPnprZWbABAFhiW7HscaK9gwWraXaQF6YnJmbrlIK9pnJvefSWIW5fRxUI
HNqPPXToOwcGgByAaShIWtvHeXB8idCx/bijB6fZM4BKiz7zx8IjYxMyS9lGrt2X7ZzjzQS6
KCXs+rVo22wqyJQkjYf8fYWaO/3HjtbDyrTtWw7adXVhDx0CpNUflL7682zW9Knf+q5JZ5r7
ttAngQkAmWl5Wi6BFlWicASVHXp445FsKVvXynPAAH9dAsChQ8+kY+d2r7vB0bdxt7MVPQUA
uiQ7NuRq1In8EhlDYGjXsVcrExLoQhUbQaEmWRC49B5BXz5/ZdfaI3INXXPn3iPa2Gko969y
SHrNvO0eX9yzLlLbyt/fsOoxE1oefYdRF86f2nqzQM4W6ol9e1ib8uqZcpNTqMpShBBC6DOm
KeD3Cepw4MSF6LiE6LiEN9s5bBaXw3kfn6ijoxMUFHTq1CllaCkoKEhHR6dqB1TXUgwPbp+8
l5NXQvFExtYeg8YFNhMqB3q79p9AnTtxeceK/aUET0vfqpVucysBt1nXfon7T25bfoVraO/l
aC+KUBVYEnkPHkudPnVk/ZV8OVuob9myt605F6sA+m/14u28PPiXIp5IO7aknoW+sPaYziMF
bt7WWx+EFwd31Ih5/JzhMtGRBdRLFZ3EjP4WpgBA8J3adm3txAIwDpow6PaYPVejvm7uXOdH
C4RCKCkupYFVrW/LdBy1fWU/MxJLB+NK9evfNx+7cU1fY5KSleQkhZ7etmb+KmL9/C76UBB1
Zvfh62ExqXklpSUyAys5KFKSkhlWfSxrfApdFv7XsnMpZeYDrPQbcAiEgVevbs2qhKEUhfkF
DF2n1+tAAEPPQJd4WagMoBIE+Xq6Xr6JmdaT1Aypk1VpagbD1N+BkXc1LUthbZSZkqVh5qxF
Ai3JiomITEzPKSorl8kovnZFuPVtIlRhQQEpctJ+l2vlde692SCP3DjuxyzluaQmJTPt+ti+
7uyy7Z3tiNvJVdePA4KrwQaaen10HA22XCajFVnpGdJH64b3Xl+RwwrKzK3JqglBQocRYGoP
F/+C5/ehOA9oAIEI7H2h00ho1hKArDa5UsXZMhiTJ0/evHmzWCzu27dvVlbW/fv3MzMzJ0yY
wGA09O1bpk3w9wuC3/zIdR4wx7kJd+DaB02xr3TKPK8p+zZ3qvoGHyd4V1ZwzSMjzXuvvth7
dbWt2sGboyvtzG82dO35oWuheoK5VRPku4zdcm3sFgAARdRSv/NXgADTwBFjqn8my8S3X5B1
1TwktBy6jHDo8vrHtspwpWOXYY5dqpWnUMVGtckCAEvftetQ167VSte+92z7Kvmg5zVgitfr
n1p4VEuEY+wVPNKr4SmTFl2/m1PxC5vgmTPf7mb31Uw7AACoeiRV/pw06TBlbuU/mfU9AIB1
zSxFCCGEPm9W5qYTh/W/F/b4RWJyQWGxuamRmbGhp6vTm8m832to6eXLl9XiSgTX0KV9P5f2
av6Ype8ePMa92oMVKWoWNKFZ0OsfO3UEAACngYucqqZs6td3gl+Vv3Tsv2D+2xu+Q78f52ON
aBpHZ/X646kMAAiCJTSysnN0b9+3bycbwXuJHsgerhi2lvnDjume7/TtH5V25NvJIe23LO2t
T77jWb8JmUzYvGKA/qvbJx9wWgd51ztZujDin5Wbjj3JIk27zF4+zpvXZFnFdvL2IDaHx8l8
ZY+iDVxHaJNA6nh5muwKfVLWzuxJZGnz3s24AHJVnURJjX4bIbSw0SmMSy2h644rFRcXA4+n
QYBcRd8WYVypwUgWX982cPjklLDvroQWdnC4MHfRNfHwcfNGm+nxn60euUcxy2UBAAAgAElE
QVRZc+HN4g1VSNMLm43/zv/str/PdF3Sy+gdqiINNef+JWqGOAhNM1NeZOoriV5RusLIW0dE
GrNvpOfIyLRXLONAbZLKe3r5aqKWu1cbT6EGO/PukSeqPouiaZp+fyNtaRqIKtMWE2R9ZyUk
WBwut9WMPbNbN+k3UiIWkS+jK2JGzVqBnQ/kpkF+JgCAlgHomgCLA5RCuYOIpeJgWSzWlClT
EhMTT58+DQDt27dXN5M3qn5HzMnKJbW0+DgxJUIIIYTqRUso6NI24EN+ojK0lJyc7Obmhvn/
hap9RbAv/axf/8gVkHRhzLUTJ/nmnbz1Ner5OJ94atvePJ8lGwc5CxkMjSY9QE5z3+aleyOS
YmSRLJcOpiQAkMaeHtonQp+8yn+cbh3gJiBq6SRS1fu5Chrq09GlC2OepWpZWQkJyMVrA73x
ztOL0BSloMulktxn4UmW3RZ28zAgAWQsZTCJYWJmXH41IY1qaVEtcsQLGP99v3aEUcSUDbvv
tZsZoNXYZokUioSKmKw8hViPAQCgyMvMBS1nIQk51XYUmZpwYlMTk0vKjJz1GCRhYkQ/SI2D
DMLET49BSzIz8kR2be2M+QQApWaaQKFIi47Jyacs9d5LTJZhamEmOxP1QtbKkQUAIIuPfAHi
/mYMiKnP34rpY1HxstZOTfluz3f2nNUx0gLlFFCUAhhMMLQEI2tl0QNFvXn9TYtFfGevNqZl
aWk5cuRIvN7qJH924I8ww+7d/a1Y8Xs2HCtquzBQgLmCEEIIoU+Xjo5O9Tfg0BfWY+QIhEIh
CUKhu4GNq6v1H7MWbTjSZv0wO+Z/4awrEbWZt7NNQ9JQ5GTlali7uRrymn72BYLv7uOw+sLF
y4pi569tlEXBEHt6sFbdOFEUZ+Y5RZesfyeRynvxIk/H2kqzjmgRXfx4/7FwvcBh9g0u+4iN
4+bHdt2woq+44tUIScSmqfNjuv6xoq9F/d9jUcRu/+b7PS9rzJrBtBm1fs1QS1WddNn9ZV//
yZu3bZpbvQqByri9+/DF66FSJ/8Offoqtk6522bdgi5wcd60u223LOyiWSlOQGUenT1e1bi2
sMYMu6v/YD0q8+jsSVf9/1DxFtTYfQv8E9Vm0bp5/D8nbHguHr521XCrSiVIpR6cOWVzrOWY
P1cONs1WkThQ6Udnj9oarXh99gyjXis3j6m8ZGdjGgPl7FwkrSjNexl++q+D6ZaD3PQFabrs
pIfX41r30M97cOhImAx6AJAGLbu5Htix9Yjrd0FOAkladFyZlZcjD4Bgi0Q8gmC1HDbgxLR/
DkR7j3NiN/aCEjuYPrn3IEK/pbMpV5L65GEcJQ40VxENJrVNTRg3I6IJY189BgDoGRtJ7j9O
AtMW+gwgWBoazPzUxFwLe15ZamRUOgWaNT9LYOlg+iQk9Ilxq2aGXHleenbTrgdH6rcK8t6/
btOuZrMG+mgVhOzdck7eem5LUX1iboROQHffPas27nD8frC/CZmX8Di6vFkbZ9E7HtLC5hoL
m2sA+lCksuLY/b/3nBObViawDhy1a8NQUxxXihBCCCGEPhHKFcHGH70cO9jOiQnl6Tf+2brn
ZlRqCdfY3n/g+BEdzKXnFo09aL1sywgbBgCU3vl55G/p/Tes729KAlAZR7+bdDtwXb+4OYe4
wbZZt+9HpRSRxh6Dpn3X17HGAKiaiYu5QOXc2bHmr1tx6bnlHAP7tsOmTmpjwgSgS2OPbdxy
LCShgCt2d+O/XjBQ9vLqjg37bjxLl7C0TZ17Tl7S16Hx5y57uGL4JsGCTZNsQ5ePver8XbPH
u47eS7Wdun1ue4g5vnXb8QeJuQx95/ZDpwwLMGHJ7q8du/hygRSW9r3FYNgN3fBLTxN5zTOC
Z9um/xDq//uaEU4coPNv/zplQ8nwNb90Nqiz/6fl4W27afsZ0num4+tIBMvOx1W68EyowVf9
lJ0IlZ3E1s4i5eTBceFP0mxddMvjz20+HG3T61sHpvq+f3nOy+iwC/t23IDgBf0cWRUjnip+
W3FEDLaGBltN58V18Ai/KZt23u74Y6AWAaBIPrP9IiPo5yCLBk2OwrAeuvKf/sqF248vmPm4
zYb5nXQJACA5TfRqJmnUcsR4ZtZveWPGdRQVnOfasKJPh4hYiRo2KsM9Ksa1vf+5YhubRbzS
MwBsRuqxPbd7zm3zOspAlzw8cDiRZNcadJCUSfkdF+yb4aMu6PUO83YTBIMjNLBy6z931ABL
BkM8/Punq/6cN+ZfvoVXRx9vg+sAAKRB19k/K7ZtXfPt/lflXD3z5r0muzmKKxdbl7E9zs7+
61z3ZT0b2X8mNKxbdqLDQ8MuHbspZwsNLFt3cTHjgIql2hh65sZEdKKemSELAIBpYGogf/HK
zNyAAQAsc/eAzDshl449ZotMrE1N+ImqPoxr5dc6/+adK0efEVxNfTM9Hqu8SZtpnQ4zf6V3
bv3rf2OWSQVmzQPnrBjip0mArD75oNVm+lL5X1t2Lxi3rJAQ6pm59jJpaFyJxWKVlpbyeDy8
Y+7ITPson8t3H73h1Oi6GovXkwQ1cRv0fpJFCCGE0KentLSkQSvzIlSpy+LsarzjSUIR7Uje
XD17RXLA9wu/9dXOu//PipVz1jD+nOXtY7/hYmjqMBsxCeVRDyNKFSXhEXn9THUJOj8sNEHs
O9OAiCt/GZ/X5espvWYaSEK2/LRmy/kWv/cxrfwxypWyqyc+u61Iy6plnzlf2YtFRNqF32ds
+Ku559z2/LxLKxfuzO3w/a+zHJlpj64cjlS+bpF28vc19wwnLdjeyoJfmvi8wLABnd5KEROC
yeVxmZX73XTp7Y1bOBMm/TLeXCDg51z4adFR3qj5mwLNyh5vX7xyKd907UALv2+3/QQjl8H3
e7/1ZKk/ozZDJnS9u2T94VZrBxuE7dz20HLoho4G9SoIPQ8fCzqS4+b6NiLHdvZyZl985u5h
zVTfSWypjCuRIo3M4wsnLk+X8sSuXRbPCzYja3aiK/r+BMESGIjt7N0mLuvfzeHNfMdV16Ri
mA5auXGcg+pAESEKGDPw7KR/DkX6jWnOLri5+0hWwJRBjg2dw4XBEQg5AACUJodJMDmamtUG
lTUxQjewE/PYbt64btr7pSrjKTXHtX3cuFItWUSVAjCsOnRiXjtwOCZgjAMLAIBKObnvrqhT
Z7ML0erTpCVl5Ro8jVpCTw2OK/Vecay36npt0HL8spbjX/84dHBFSfBtgr5dFlRlV+9Z+3a/
CWU4jNhwrH4f7dRlkJPqk9Cy8Wlv41PteMxaDzCrlsUm/n1H+L/5kW3VZqDV2yrDF3t3Enu/
/tHNBQAAqidCcI08O/Vxl8uBySQBwL+huXe4eu4xm03663ClyJW448QlHastlcbym3PgzdSE
DIeRm0+//VWlzOSYd5i4pMPExtdBPT2DJ08iXF3dNDQwtIQQQggh9KUGlUofP47Q11fdd2Wz
2VlZmep+i748mZmZbHaDuvcVK4IpssJULWad18rHx3rHvbDsfmIDxfMHT/Q6dDS6G/6ouFsH
QXFYaKyxzxhTMhMIDduAtn4OLABo39Fj629JKQqoHFdSu1J2kJ6KVcg1b58NFQYvHxFozQQw
6Ng5/uTxEACgS4tLQNfGxcZQwASBo1cDKnWViAnbb8bBRR0EVcMkHcZNCXZlAQD18oDqNdeq
xjvUn5HbiAmtJy7fuFtgce2O0bDVXeo7DzZpNnjN8cFVt/FazzneuuomlZ1Elt+c/X4qO/Vv
e6ykgdq+f52/VfUHxl1H9zo/b/u5bj/bn90VYTNsvW/FZDiqBqZRWSdnjr/mv2HFABMSgC66
uHjQEZt1fwy1UTO+Se3+AACSuHN/zN4UFvmKMnAKHD51dBsjFgBQRc9rjDJT0SI6DF22HGQ3
Vzbq6lI9vK76MLof+zqwAYCWvrjw5+xtYdFpJWxzv+HTpwZbN/1SlwzjzkPb3v917/VeCzrq
knRxyKGjmb5TpluculhLXImSSKQaQl5TxpUQAJDMLzPfTE3NUlNTbt26IZfLP+6RvHyZgNUM
IYQQQuh9YDKZ+vqGJiZmKn9rYWEVEfFIJivHjPqPYLPZlpbWDfmLihXBKDWLWUN3Lz/zPSGP
ir7qkP3gMct7ahAnflFoZHl716cPIrV9B5gzILNKiIbDYcsLqr2hoX6lbJ2imquQp75MJi17
WVXvozGsOvXzvrJ+xrSoTj379urgqlf/MXp1rnRGvlndWlG/NdfUn5Ge0GfkRN+pSzYlNB+z
OtiU8cVWNZbNgNGBl1euW6KXpNFnWWcDEkDtMK7AJvxcWiHj2vafNmimdv69nSuWL+To/TGy
OSP7wu8qRpkxAIDl+c23NJcAQtju+/EECwCA5T9xGq0qrlL7uDYgVQyva1tUfRjd64qrUGjY
BE8dMNug5OafP23efsV/SXd1aw9WeQMRABRlsvpO0aPh3re35ZSDB6IDJzlknNx3Rzf4d3/N
6FO1/o2krKwg7u9ZN+Nis2kdu9ZffzOqs0WVmBfGlVClNp0gzMzMzczMMSsQQgghhP6bRCJt
d3dtzAektpP+ZkUwqZrFrEkTP2/9Qw8fFzqmh0ndJthaMD3458Njy1ihjzU851rXrweqZqVs
RcIhFauQUxQNFK1iIhTjbvM3uYScOnD80PwJR3wn/Di/c9P3dOq7MHdta38zeXw2QFn9VwP/
TPE8Bg13nPx7QpvlPS2U9UDdMK7Wfk1YQnyntl1bO7EAjIMmDLo9Zs/VqK+dRFfUjzJj8ZSD
00i2gF+RBouvcjWlusa1AbPm8DqaVjOMjuDZt+7SyokFAN3aO2/blJRKgT7ISsuklDJmRDA5
PC6rxue+/nN2PWeVZxh3GtLu6JI9Fzt1iz6a7T+tu5ipiK79T7TtW7bQs2vbaboNJyf80B+r
Fv9tuGGCW6XIEsaVEEIIIYQQQgjVQ6UVwRi56hazZlj4eAnPPbh2NzPXdYADi0l4uim2PLwA
EYTXZAcW1Gf2WDUrZZsUPtujYhVyMwsz6nRsoryNY43uLcE18+s3w6/XkJOLxv1zGjpPbPIs
qeeaa+rX/oayZ/v+vKHbb5DFxb2bT7dY3NPoy124h9CysdZlltu8ecFL7TAuv/fz+UILG53C
uNQShaxeo8zqLPy6xrVRBTWG1zFs6x5GR3A5bIVcToMi9p9J3x9KUc7ZxPL8ftfi7kJVn6tc
D66+h63h2be3zeR///dCatBrVQtNAvJr35/l2HOqY8X/RW1GfR1yfeW5iNFufm+PHNeaQggh
hBBCCCGkmvKNm+Ki3KRnd46umTv/HARP6ufIUi5mXXRq067bqcXlxam3dm45J2/du6WIAGDa
+HixHv5zPMXFx4kNwHL0dMu79O8NiYdvrauAExwuR5KZkSejaDWJ6/B1lKuQ55fmJVzfeSRM
BgBAGgQGeRWe2b7vYWaZTJoX++h5xXpwsuSHd5+/KpaVF75KSiuQc9/LOteETkB339LTG3fc
SCoslxW/irlz/Wl+zbFTarNLFrtv00WNPpNGD50w0j5u56Yrr6j/UvWqbRjX+/g4SkEDTdPA
4nC5reYfPHbuxLFzJ46dO3nywka1kzc1/tpJODR30ZkSjyHzlq3dueO7AGUchmHcbf6mLTPa
a8Ufmj9h8s8XkmsJtDIcRv196vTls6cvnz19+cSS7qKmyRvSuPOwYFNNw87Du4sbfNJMkY6w
vLi4yrvSOF4JIYQQQgghhJDqrrHaFcHULWYNACyHFh6ME9cdfFy4AACc5r7NpZee+LZwrvVV
MaZj8CCvJX9NGpu2ZPvYZqoT91e1Cjkhaj919svlqxaMOsjQMmnmb6/HKwQAKj855OQ/q9a8
ypOytK19xs/o915yqJY116p05VVmlzxh/+ZjVPdlfaxYJHSbMPDSdzs33/Rc0EbnP1K91A7j
YqWyQCqR1ncEEcFi1Wd/Ku/FizwdaytNpkG9Rpm9GyrvWXjN4XUA1YfRRbaf6PahM57rMWrF
jsadVX5cTLaurSnOr4QQQgghhBBCqC51rPmlcjFrAAC297e7L377phctaDf/YLs3v6yy2jUw
nSfsqVgfm2XZbc72brUmrmYVclLkPvrXv4eVSQkNLhMApik3B3yzNOCbxpz1YRVnzfKetXcb
AABUOX4AdQtzs7y//fdQXdllNfD34wMr/s8w773mcO//VAUj9VsFee9ft2lXs1kDfbQKQvZu
OSdvPbeliNQQW4pSb10M7zTInpETe/tBsgJsakmHEKjfny6JC3+SZuuiWx5/bvPhaJte3zow
CSKgu++eVRt3OH4/2N+EzEt4HF3erHXNaGAjEBwuR5KWkSej9HkVw+ta99DPe3DoSJgMegCA
LPnhw1JzF2ttKjMprUDOteMSAPQnVChVJgUnWFyNkmtb/s726N3R1ZRfFHXij73x7iNm2lcZ
54RxJYQQQgghhBBCnzuCpcHFXPjMqB315jhwSq/EP38fc47Us3QL9LA3Ta01Hab6/UmRRubx
hROXp0t5Ytcui+cFm5EAUL9RZo1QedjdaBXD62oOo7NnAHxCLz9WnRSc1XL+/qliG8G1f38+
9FuejGfo1GrEb8PaVVuojsjKysLKjBBCCCGEEEIIIYQaCuftRgghhBBCCCGEEEKNgXElhBBC
CCGEEEIIIdQYGFdCCCGEEEIIIYQQQo2BcSWEEEIIIYQQQggh1BgYV0IIIYQQQgghhBBCjYFx
JYQQQgghhBBCCCHUGBhXQgghhBBCCCGEEEKNgXElhBBCCCGEEEIIIdQYGFdCCCGEEEIIIYQQ
Qo2BcSWEEEIIIYQQQggh1BgYV0IIIYQQQgghhBBCjYFxJYQQQgghhBBCCCHUGBhXQgghhBBC
CCGEEEKNgXElhBBCCCGEEEIIIdQYGFdCCCGEEEIIIYQQQo2BcSWEEEIIIYQQQggh1BjMD/lh
dD32IbBMEEIIIYQQQgghhD4HHyiuRJAkNCRmRFMUlg1CCCGEEEIIIYTQp+xDxJUIkgyNTtl8
6ErcywwAUNBv40s0TQMAQbzdYic2nNS/vZejGYaWEEIIIYQQQgghhD5lRFZW1nv/DJIcMHuz
UEuby+XyBfyUtFd8Pv/NbymKAgCSJJX/LykpkZQWHf19EsaVEEIIIYQQQgghhD5lH+g9OCZb
Q1dPV8DjsdmsguIyoaZQuZ2iKGMDHQBIz8wlSZKiKE2hMPmlDAsGIYQQQgghhBBC6BP3gdaD
42lwBTze208lSeUApeKS4hEDAkYMCCguKQYAJpPJYrJ4lfZECCGEEEIIIYQQQp8m8oN9EpPJ
ZDKZDCaTwWAAgFwuL5OUOdmIjYhyI6LcyUZcJimTy+XKeBNCCCGEEEIIIYQQ+sR9qPfgmBUf
RBIkAOhqa3Zo7aenwzLRVFBSKQBMHuyfXszIypFdvnk/LQ3LBSGEEEIIIYQQQuhTx/xgn0SS
bxd947GZXmY0SUkoiUJB0wDAkkgsOQyxGXmXzcRSQQghhBBCCCGEEPr0faCXziregGMyGQwG
SZJPYhKWbDolVShoiiJomqBpmqKkCsWSTaeexCRgqSCEEEIIIYQQQgh9+j7cZEYkQZIESTJI
JpMp0hJFJWVduhdDEBWDmAiCuHQvJiopS6QlYrPZWDAIIYQQQgghhBBCn7gP9NIZySCV03Uz
GAwGyRAKNUXa2hYWljRN08rQEk2LxZYi7VihUDM3NwcLBiGEEEJ1OnPmTIP27969O2YaUlq0
aFFycjKbzaZpupbdCIIoLy83NzdftGgRZhoCAHluSuHJBaVPz9FyWW01h8niOXcRBi9h6pjh
2SGEvmwfKK5EECTJIAGAyWCSJMlgMNhstqGORkp2/qKNhwFg0aS+RroiNpvNYDBIBuNjZUfE
3dOPbp2ggar4mQaCyQzoNNTOpeUXUNhf9tlhHmKmISxTPOv/oIKCAswE1DjJycnPnz/ncDh1
xpWkUilmF3rb7Jz4UZNVbDX6fyTzzTsWNNA0TdNA00AplP+ocknW47sFJ+bpjvwbzw4h9GX7
cJNkM15Hi1gsFpPJ5LA5u45eD3kSxxNoAsAPaw/7uthy2Jw3K8d9FI/unPJs0ZkkSYpS0BRF
UQpZufTBlX26hmIdA/Na/vDorL5X/f9Y09f47YuFsvTbJx9wWgd565OfSGG/w9n1+uOpDACA
YHC1jOx8e04c28NRk/gPXjBNkIcV14PpoJUbxzlUCaFSaUe+nRzSfsvS3k1eZz5qbWyKikdy
tMw9uo7+blhTnIHs4Ypha5k/7Jjuyapj4wekuvSpzKOzx2+INh20YvVYxzePd+XXfxm83fDn
HWOtnm2cOj+264YVfcUVVUkSsWnq/Jiuf6zoa8EAoEtfXNr775WI6LjUIra2mbVHl0FDezXX
+oQuBKbjhM0rBpiQ71qxRWEfoPgafdZ0YcQ/Kzcde5JFmnaZvXycN++TqWD1qfaf3r2sCeNK
Ku7d8siN437MGrtvQUtm0cXF/VeFVLRBLL6uWfOOQ8eNCDBWm1lU5tHZk6on+N6KNPnAzInh
7f/+JUjvXT+MSj86e9TWaMXruzrDqNfKzWOaMwFAEn9h67q9t2LymSbuPSZMGeijq2xr1G1/
P+3ze8NisTgcTs24Ek3TyokalP9R/p/FYqls09Q30U5N8UQriai9nW+qLJWm3z917OzD6Bfx
KfmklqGpjXuHfsO7Ogjp2m9DTkz5k/Vjl5ZO2jXb7236stvLem/TXb51XHNmXRfI+2xh6LLE
y//uOnQrKjm3nKNjaNEsoO/Qga1MmqBqlT45azNpMWTcJmx7E8b+dO5zOjcacqLo/HhQKIBS
0Ao5UAogOXqurTL3btD9rPoLX/bZIYQ+77gSj8tSKBQcNofJrmjNhULNtPwCKxs7oVBToVCU
lJRmFCmEQk0A0BJofKzsoCkFRSmSnodWPF7KZUXFRTJZ+bEdC6vvSoC+sVXw8B/VJlUSc+3E
Sb55J299jU+ksN/h7BgOw1YsDTIkKVlRZvTJTet+2mqwZbrvfzCy1AR5WPEjyea/13F5iud/
T52TOmjP3ECNj10bmyDTFJKs6LPrV6/cIN64sJ3ov1bvmETqse2nuyzrbV69ynBdB4/wm7Jp
5+2OPwZqEQCK5DPbLzKCfg6yYADI0y+v/Wn9E5Ovho4YOMWMX5oeHXY/R8H+xC4EBlfQ+GfN
txXb/VOuyVTiqW1783yWbBzkLGQwND63Ru/Tu5dVk5eX9/4SZ4j7LFve35qk5ZLcF1d3rli5
WmSxrJ/p59JBqnIjqC10USbld1ywb4ZP1Q43nX9nw/ydBcGz1/5kWnBz67Ilv3DWrehryVC3
/fO8rdM0TdMURRGEchUZiiRJgiAUCgUAkCRJv9bwJrpJ1NrON5Wy5/8uWLS/2HvIoBGDbMy0
6YKUmLCHZcAlAOj3e47vsYWh82+tX7g20X3Ct8u8TTll2QmPbsWUM5voBCgFyeXRDJoqKWUK
rQld54pnu+Sr8pAVUJpNKGuMQkIymUApPrM29ss+O4TQZx1XGtIt4NStpyUMJgCw2azi4mKK
ojQ0uAAgkUgAQLlYnFQqLS8rHdrN/yPmiKS0sOJxjKJKSou79BphaGylqoNB7fhjfi3pEKI2
83a2+dTKu9Fnx+QIhEIhCSAUtRw95MHF3+9EyX19Wf/Fa+bd8/BDPSwryhXUJ1Ib3znThMIW
Q4bcPb/iaYK8ncd/rN4xbLt217h2cNv1Ngvb65DV25mAMQPPTvrnUKTfmObsgpu7j2QFTBnk
yAGgUs+sWxfpOHvVtICKPzI0s3P/wi6EtxVb9inXZEVOVq6GtZurIe9zrLqf5r2ssvz8/DcR
ASaTSVFU5ZABQRAkSVaOETQsdZKjqSkUMgCEWjr9RnS7NuvB48K+pp9PdLvSjaCWnSRl5Ro8
jeonRaWc3X/PZPCGgW4GJBj1mDI6bNy2oxHB091fqd7u+RkvuqJ80238+PFJSUlGRkZyuZyi
qJKSEi6Xu3fvXoFA0LgmuomuQXXtfFORRe5bc0DR8/dVg+0r+v4GhuZ2Xh/kHN9jCyN7dv0+
1X7+lCDlU4OBkVWzFk2ZvlxGS0rlV38qPzmD1HckTbwYHsMYth2Zem7UvV8VCReUQ3tqD7t8
um3sl312CKHPNK5EU5SrWOA2NODN6m+17ax8NlQoPs4DGBDRT0MUcjkAMFnswE59dXUNi7KT
au4p0DWv6372cMXwTYIFmybZhi4beZAbbJt1+35UShFp7DFo2nd9Hfl01smZ46/5b1C+A0IX
XVw86IjNuj/6Sf6a/kOo/+9rRjhxgM6//euUDSXD1/zS2QAAZvwwh8lkLpo/l8d7+x5FaWnp
op+XyuXyVb8t+2BnR7A5yudHquj58a3bjj9IzGXoO7cfOmVYgAkLAGQvr+7YsO/Gs3QJS9vU
uefkH/s6sAGgPP3GP1v33IxKLeEa2/sPHD+ig5hLqc6HoTbU/eVjrzp/1+zxrqP3Um2nbp/b
kZ16bdfWvbefp5UJxA6+AyaPbWNI1vMAlvR1UB75p5OHFQmWxh7buOVYSEIBV+zuxs+hAADU
5gkDQJpSPRP08+7sWPPXrbj03HKOgX3bYVMnBQouLRq58kE5DSt79ljJ8v527zzRlhGbBAs2
TXJiqiwFkN2vWUv7OfI/pUxTSGU0T8QjAUBWo25wMlSclJoqVznR8oTDc+Yc0xy7YkHbN4db
eOnncTt05u6c7MYGAKBzzi4Yc91v82L9v0apuJCrNGpUTvWyaGPCVJW3yj9UWfoqOraGncb3
evzt3/+G+U3x5ldrRUnjrqN7nZ+3/Vy3n+3P7oqwGbbeV4sAkMeePfXCqf+sFmq6AJ/WhaA+
3zhdzVNuhsTkMozdg7/52jbu6P7TD+KySZMWQ6Z/38OK87aZraP4ji0L+lhnfX/t2MWXC6Sw
tO8tBsNu6B/fESsnqm7x1NWT913B3iavsjl9k8lOdM2GnVnvBrw9xNewTbQAACAASURBVKhq
q5ugNubm5kqlUhaLxWKxioqKuFwuvB6EwuFwFApFUVGRlpYWg8EoLi7mcN6lN04yCFoul9MA
DYgrqSw1NXdJNUVQo8WrMVpYxR8yC89VuxEs6qil+rgpiUSqIeQR1Q/80YOXYn+vitfsCIGb
n2PJ/sdJMvNoldsVnnZqh4LUvHMZknW2z2rb8HpkSCPiSjRN6+rqGhkZkSQZEhLSrFkzTU3N
S5cu1RmLrLWJVlk0BecWjT1ovWzLCBsGAJTe+Xnkb+n9N6zvb0oCUBlHv5t0O3Djb/2MyDra
+Xrmz5bOKm55nYzeFpbsybnLRQFTetlrNPIc3y3605RPy0s6G7y95xEaPI4s61WeAgzex0gy
WialS4sYxlYMWTktLaGTzkuf7md6jmJ3W8Fot4KWSRRx54BSEHLph8yBJukvfPFnhxD6XONK
AEApFKBQ1Odbwo/7HSABVL+h0wVCEU0D0LRMWlJWmK0mWCZvQLrlL+Pzunw9pddMA0nIlp/W
bDnf4vc+xqp35TYbMqHr3SXrD7daO9ggbOe2h5ZDN3Q0eBN0Cw0PnzN/wbKfFysb09LS0jnz
FzyLinJ1dv4QZ0fJClLC9u+5r9VmgRMLgMq+8Puio7xR8zcFmpU93r545VK+6dqBFkTayd/X
3DOctGB7Kwt+aeLzAkMmANAFN1bPXpEc8P3Cb3218+7/s2LlnDWMP2cH1hZzub1xC2fCpF/G
mwsE/Pxry/+3NqvtjEUzvPWlL6NztHTJ+h9A5cDlx8pDRXlpcXFxxYM4g6OhwSKp3EsrF+7M
7fD9r7McmWmPrhyOrP0iofOuraqRCaSWVcs+c76yF4uItAu/z9jwV3PPuV1/Omi185sZyYMP
/dhWAwBkD1+noLoU2vJV1NJ+q/p8IplGyEuSHx7YFarf4Rdrhoq6UXhjhaqT0ipUe7LK6px3
b+3P+4o7L1jc0YghT3l9uJo+rdz+2Hnn2Xg3DxYAnXfvdqxtq2n6RLzKC7nKCzGqyqI9V3UL
YAr1L32WTe8x3S8v3Hyoi+sIe3aNXw4YHXh55bolekkafZYpH6qp3OdPs8Qt3dSOqvhULgQm
l8dlEmrzLfFFaa+pP48ylDza8tPvs/7n0GfC2GWj9QtubZi3fftFv8VBNaeKUlN8H/Gs/b7d
9hOMXAbf7/3WkwVAZZ1s0J3ig1Qw5fWgujl90x+jVDbs9W3Acy78VD3xPwZaNEm55OTkGBkZ
jR8/nsViXb582cHBYdeuXf369ZNIJDY2NkVFRU+ePPHy8iII4vTp05GRkbVUSAAARZlMRUbR
Ckl+/PWD51MM2tmLGjZeQ1WptS1SlZnqi6BKZgqIepZd9RuBepKysoK4v2fdjIvNpnXsWn/9
zajOFlwqIzWDNDB+MysKwTM20sxKy5Sp2a4ANXEllXeuWm5Gb/9Q7T51ZEgjYgQ0TRBEaWmp
g4MDRVHx8fHm5uYWFhZPnz6tc1bv2ppo1UVj7u1jv+FiaOowGzEJ5VEPI0oVJeERef1MdQk6
Pyw0Qew704Css52vb/7wY8Jr3vIqH2NGXFyJRTd7biPPsQm989NylVxjufYf4vDdxlmz4vsN
6dPJy4jbtF0MWlJGlRYxvL4hLdrQOc+plzch7pzi6V5J/FXu5IeMlgsUL67R0myQST67/sIX
f3YIoffhg84RQNTj38dFKRQ8vmZRdnJxTnJxboq0JK/izXIVezYkrkRo2Aa09XMw0ta2bN/R
g5+alKJ+PBbBcxsxoXX+4Y27T+7ccMdo2KQub6a/W71ieTMnp2dRUXPmLygtLZVIJPMW/vQs
Ksrezu735b++z7NTPNs2tlO3Hh169Or33bZE12+XDnfiAFApV44/sR04oZO9Fpdn5D2gszjh
fmgGBXRpcQno2rjYGAq4AgNHLzsRCUBl3Th2l9P9mzFtLbV4Wpbtxk3oygo5dSun1iVYRB3G
TQl2NdHVFrKyb50I0QyaNKK1pZYG38DBy8mI2YADeJPkR8zD6F3Tevcf+FX/gV/1H9hn7vE0
Cqjs22dDhcETRwRaGxiI3Tt29jCs9Ts1KktFJgAwjZ08bPT5LBZPHBjgIEtNyqTUp6C6FChV
tfTTybReg0dPXXkh08jOgJBSKuqG6pNS1HKyACCNP/DrmhDzsQtHuFTtlRBC71YeZSG3ImUA
QOeF3IixCfTXJet1IaspC1V/2LDS13AZOtI//8SOU2kqCpfnMWi4Y1JYUZtxPS2UXX26ML8I
hCL1b5t9IhdCv2XXS2rLN769v5+DgVAkDujirct2Dh7dzsFQpGPfub0LpCamq6znqovvY591
U90p3lsFU9+eV4oTqWjYoZ4NuKrEm6o2FhUV9evX7+HDhwsWLCgrK7OysiorKzMwMLCwsCgp
KREIBG5ubhoaGsXFxXK5vMa46SoV8qv+A78atOB4pSZUkbh3fFCPDt2COvceNnl7gsPo6UPs
G/qFnIpSU32XrKUIKmUmh2hw2dVJ275lC7cWwxZu+HfLktFWMRsW/x0hAVpaJmHzNCpXUA0u
VV4mVbe9IXcuqvb2ue4bVm0Z8i7y8/PZbLZMJktNTc3MzMzLy2Oz2crRTLX9mZomWk3RkDo+
PtbJYWHZFIDs+YMneh062sSFPyqmgS4OC4019vGpOYVXzXa+vvlTxy0PaKlEChyuMh9ltxf3
7NGhW48O3Xp06DnvZOVntFpvQ03UT2iap+U3l5550ILtywdbxh+YP27MtHWnn+XJm/BgaWkJ
XVpES8sJkS2j2SBW1w2sHltJbXO6LL387CyCr89su5guK6GlZZ9df+GLPzuE0PvAxCyo/gBU
v4FIFNXImxPB4bDlBbVOBkIIfUZO9J26ZFNC8zGrg03fdgUIgli7csXU6TOUjSkAPIuKcnSw
X796FaN+00Y09uyUU+0aFNxcPX2vZvc+foYsAABFVnqG9NG64b3XV9yFFJSZm4QGhlWnft5X
1s+YFtWpZ99eHVz1WACgSE1KZtr1sX395gPb3tmOuJ2cTvnVFvd8vYogKFKSkhlWfSyr1NgG
HcBHz8PmYzdWWyRIlvoymbTsZVXfy1BlJgBQBVFndh++HhaTmldSWiIzsFJ/gGpLQVUt/YQy
jZKV5CSFnt62Zv4qYv38LqKqdUPNSclM1Z8sXRb+17JzKWXmA6z0a2Q/IfBs675x853oiW7O
RSF3Ym1bztQhQVGfC7nusnjzh4qGlT4hajni6zPT/vnrZtv/1ZghgtCysdZllttYv/6+meBr
8qG4qIQCvuq+/yd1IdQj3wiuBhvo1xPnEBwNtlwmU32QqovvI591U90p3l8FU9ucvi059e1q
3Q24qsSbqjaSJFlYWGhoaOjq6mpiYkLTdLNmzQQCQWZmprW19b///iuTyezt7V1cXFq3bv34
8eM6KqRyPbg3v66YtxuAqSHgsRr1XZyKUmPYqrpL1lYEbzOzEWVXF5Zjz6mOFf8XtRn1dcj1
leciRjfnaXDLCyr1GumyMgnJ1uBw1GxvyJ2rPjejWvepLUMac8URBE3TTCYzKiqqRYsWcrlc
JpMpFAqpVCqXy+sRWlLdRKsrGlLfy898T8ijoq86ZD94zPKeGsSJXxQaWd7e9emDSG3fAapm
x67Rzjcgf2q/5Qm1BFBUUEQBnwSW78x/9n4HoEg9PntudP1uQwRRI2NoGoAg3kMbWK+n5coX
uMix67QV7QY8unjowKGZE26OWr5kgFXTzHRHS0rokiL5+bmys7MJbSt212UMlwHMziul/3wl
f7CV0bwvw6k3IZhPS0o/x/7Cl312CCGMK30IdP2+Z6bf7wxQTB6fDVBGkFVuyzRNM0hy/epV
ysYUABrajDb67JgcgVCoJeoyss/573cc6OYzthkHgGBxuNxWM/bMbl39cdK42/xNLiGnDhw/
NH/CEd8JP87ubA40DQRReUxatbOr86CAJKvtX/8DmN/Z/KPnocreJw0UTb1TJigSDs1ddE08
fNy80WZ6/GerR+6pNYHGlMLHzzSSxde3DRw+OSXsuyuhhZ071O+kajtZaXphs/Hf+Z/d9veZ
rkt6GZHVIhNege5lW29HjjFLux1r1/JbXRKgHuXZsLJoaOmTRj3G9Dwzc9fuR251zr9N6js4
ifY9elrUu73qCVU+qQuhYflW9+OqquL7BC//hnuvFUxtc/omBYaKhp3xjok3RbkIhcKDBw8O
Gzasa9eu//77b2pqao8ePa5fv56fnx8SEnLx4kVnZ+eAgICUlJTr169Xno+jftfd63m7m7bU
VGVm3UVQI98ACIKoI3sb/gAi0hGWJxaXk9amRlRcRjYFyrAbXZqeUaxvZcQyylW5ndGQO1e9
bkbv+tjQkCcMmiYIIi0tLSUlJTk5WSwWZ2dnJyQkiMViLy+v2NjY58+f1zFJqKomWn3RmPh5
6x96+LjQMT1M6jbB1oLpwT8fHlvGCn2s4TnXmlnPg653/tR2yyN1bOyEe58+L+lrpEkAiydk
AQBVwGHW8zZE8AW88rQiCQ2s159OFxUU0TxL/nt/KUL103LNGIaRR9AUtxaOv3677t+73ecH
Cprkw8vLaElJxQnnJUj3DuQAMFwGMOy6KZ4dVYTvZth2JE296NKcz7G/8IWfHULoPSAxC2o8
itfv62jFO38dzWKxQCqRqmgBy57t+/OGbr9Brsl7N5+uOpb9TWPq6e7u6e7e0Gb0Xc+Oadln
VIfyM38dT1YAAMPUQkzHR8Wr+r6B4Jr59ZuxdNOWkQb3/zkdKQeGqYWZ7EXUi9c7y+IjX4DY
yoyhPh8qY5iYGZcnJVQdfV3/A/iE8rDy8ZtZmFFJsYnyetYNVZlA5T0LT7LsNqqbh42JvhaP
Ve3hvVoSakuh3qGlj5lpNEUp6HJpeT1Pil3byfICxn/fr9PgUT7J+3bfK6hxHgKPVt7SkJv3
79yMsW3tX8/lb+ooi3qWfi1Ytn0mdILz24/E1rn8GdOhezezRwf2hRdSn3SZNjzf6qOW4vvo
Z03Ur8X78BWstuZUfcNez9OpM/F3KReSJMvLy9evX79kyZLk5OS7d+8uXbr00qVL4eHhoaGh
YrH41atXGzZs2Lp1a3x8/LvN2w1NWWqq7pJ1F0GlgFVuTh7J19Qg6pG9DTri/LiYbF2xKZfU
dfM2TwoJzVU2InTxkwfPBZ4eYpaa7YwG3r7rvBk1+obVyAigQmFlZWVraxsSEtKjR49WrVpp
amqOHDnS09Nz3LhxWlpacrm8oU20+qJhWPh4CZ89uHY3LNfVx4HFtPV0Uzx+eCEkgvDydWDV
95qtd/7UestjOnRqrxt65ERMPabKUXEbYhjb2XCi7oW+TZbKvX8vjmdja9wUnYzGPS2raimE
JkY8uaRU1kSRB5qmAIDZaobGnFRmqxkAUH5uDgAw7LoAAJUWCgCkqTfQ1EfJgXe82X3ZZ4cQ
+tBxpaOzelW8Yt09uPvgb+b9/TCrca2H7OGKQcNWh72fhaCbOvF6fs+sbjLaCiXSOp/lCYHY
UpR662J4emFhZkLY/9k777gojjaOP7vX74C7o/fekSIqqCjYxdh7SYwaNdFYYjRGooktMdEY
jb5RYywRjb3X2FGsCEqv0kF6h+O4uvv+cYiUOzjgMJrM98Mfx9ze7s5vnpl55tmZ2TsRufUX
lqae3HubNWHhJx99NtsxLXhvSBGhxP/+/bedv/+2s73NaIdz98Y38Zw20/PVyeDQcgIw3b4f
+Aiv/f7ng+xqiVRQ9PJJaHwlAQDS3OdPU4oEUkl1UXZ+lYzJYmKAG/Qb1bPm6t4jj/MEEkHe
o+B9N2T9x/vxcFU6NLNUQ78RHiWX9p+PLRVJRZXZ0c+Tq0j1b0DpGOYta9jUQuokBOCG/qN6
VP998OTz4jqpuCI1OkWxt4Qq21AmAsbW1aNnPw9NqxRWZIYGn39dFTA6nU68evmySlBeVt1Q
PVSVgjoD+X9StJqq4py4m/t2nimw9vHUa9ZsqTStVjKL0Xk8Nobp+M2cYhFx9HSyBDAGkyEq
LqyQEiQAAKd7gLfo3r6TCQ5+fXXVjHPgKspCxdEqSr9V2N4zZvqWXz3XdotHsRq/bKFlxMYV
P594GJdRXFaUlRh69sDZeNG705h0TDcV7Wk7iu+fzTWmXov3lgyskW4qm9M3va2Shl3N7Cg9
uabKhSRJHMd1dHS0tbXpdDqLxeJwOGw2m8FgKDbKodFo2traLBaLwWAQhEa2hpFLhLWCxtQK
JXKlTb2UprTUlIrZZhEAAEjSH998lJSdHn7qSKjYs3c3JrTyw2YdgYrbJsrv7P315LOs0jpp
XXHsmZ0nMrymjXOkAG4xYqpP7ond5xJKairSb/5+6LnF+LHdaCrTVZxfafetsn1uZJPqdliS
9Kv/23bwWRlB5Ifs3bbrXh5BlIUd3rb9Wno7mhAMa1gKV1FRUVJS0r1799jYWAzDJBLJiRMn
amtrKW0vvWveRLdSplS7Xj1oz49eeuXey4UOQHP29qy4c+yBqLuPi5q7YrejQ2/Z5TUNFjlN
WTwRv7xq5W8XniVlF5cVZsWF3IosJHEcV6cbYvYaM9Ik8o+1B0PicoqLsuJu/PHDvkTz8WM9
GSoqz1vylmvC9qzfcfxeZFJuSVlx1vPL/9t2Tdo/0IeLacZmgEIBJovW/ytMx5TW/ytgssja
PFJcg5t4ApNFVGWAVIib9wIq9X0cL/zLc4dAILqA1qfaKnbVMcLlopLk67/9um235e/rBvKw
f7UiJElAG3OdgQQgiGbOszz5yNLxRxr6aL9vjw1rS3vnqYvHZe35Ze4NXN/a07+7o1keAEgz
z/9xkfhg8wQbGg4jPpt6Z1nwHw+91wboNmtMBQLBW8xdY0dGd/Cs8Ze/PHokuvcyb27Alz/K
Du37a+38zdWYjr65xzhTv248qMwNv3J0+46iCjGNb9vr0+WTHCkAoDv4q5/I4P2Hvpm7Waxl
7uYftHWGrzYGoFQHJYOkwFU/yA/s3/HFqSIJU9/CbdwiT2euujegdCjydjVsaiEUs2nbfp/v
xBu0ZFXOlu1r55yhcE1dezvqs6tV24YKEXp/vCJ++541c49xrHoM6dXTMFRxqGX/kb4hf66e
+9jUc9K3q0zeFJ/SUpCqmfd/SDQMozB0DG08J6+eM8Wa0vxuVWUK2s4sbjx83sjrqw7d+GDz
iNHTenx/aOG8/O8PznOlAtu7fw8y9LHzhz58tZs8tvKyUOVMqSj91j0wvv+8aTci/kho+25o
FiOCdtjePHbi6t7LOwsENJ6Zfc/hzmIA5rvSmHRMNxXNabuK75/MNVW9Fu/tGFhT3ZQ2pw3j
SkJ5w65edjAlbXVAN55GykURDlAEjBoPLRQrm5p9i2lkHZU0Ztfcddcax3xww/Fb9i92VeYM
nJy3YlDzUlMhJrf1IgAAkBcl3b90JHKvkG7sHrhsyQBdXIW8ft14ePOOwOy80tt2o1naad0/
9sPZnyukbCOXfrN+njnQAAcAjN930Q+CI8F/fH30lcSw++jvvhll0Uq6Klm6Ke2+VboEjW1S
nQ6LFJemxsXlmFaT3nWZcTGxzOEyUisnITbGrB+AnfrRSYXxKHZWwjBMMQ/u8OHDixYtGjFi
RGJiojoD1+ZNNKa6TGlOfbpTLoc69XJnAgAw3HzcxHfifPp0U3tKXfs79EZd3pgmW4OzXGZt
+tnm3Lm/T+48nlMi45rZ2XWb89PUQD7Wchlmy26I7jjj5y38/Ycvb121uwL0LO27f7Z1VqCt
0mlXXestfxfQ6EkCbuLugl27tO9KfnEloWVs4zH4602Te+viGrIZnMUCHZ708XZa3y+lT36l
6PCAkMse/gIYTtHhgVwufbAVgMRZrPdxvPDvzh0CgegKsJKSElXfXVg58V7vXa/3s5SGb5+1
lbby+JLu7d7vTvp868yd1K///NKbpvkcaPTkh3+eN+nDxVQqVfHoCjAMw3DAMCABSIIkSZIk
FN6HWCS4ePrgrK8PvEeF/e/O3fusISmtE2MsJhWJ9i4ZHlF4YdmSqMA/Nnyg26Wx9Pey9N/9
Mu2K4ns/Lflf3rwAwNSpU9t1/KlTp1BfhlCwYMGC1NRUxepIoVC4du1agUBw5syZRYsWSaXS
3NxcBoORk5PzwQcfbNu2TSqVHjp0CImGAIDc5cbdZn5G5j8lS/PkVeUUri7G0wUAecErwIBi
bA4A8sI8wHCqx+j40ycsthei3CEQiH836ruacrGUZPPY9Y83JAUPju4//jApr5Zp4th76qez
BlsyW0t/jSTzXFDQRe15W9cOyN46+wwj0OLVw/CX5RQTr9Gff2ifduHUtYi0Uty0z4wvV4y0
YRBlT/7ccehRWkG5hGHoOGDmkoUBplTpsy3z7nVb5hp75EJYnv2SfcOUnHyoXt69P3effJBQ
IKLxzbqNWfT9RCd1MqlvYpP+MtrWzqXNI7MyUvRMbN6vwv535+591hCjsZhItHfM8Iiip09z
nYf05nf1BM33svTf+TLtkuJ7Py35X968IBCdQSqVisVixWeZTJaenu7g4ODv75+cnJydnW1j
Y5Obm+vj4/PixYuMjAwLCwukGEIB2314ZUI439UXzCkUkny9zRCJWxAAJJAkAOBmBCmTVqbE
st2Ho9whEIh/PW3ElRSrZDFZbe7z00deGAzeZEsBALLqwa+rtub2XbHuCx9+xbOjW7cF7aDs
WTWAW608nfPa068I2/nDScGwtRuHGFNk2SDJSheOW/LDHCNR9L4Nv6z8xmnCZ/M2f2JQ9Wj3
moMHb/tuHKXPtfGbEDTW0ZKH5d/6ZfnuQ27eqwcxgRQ+/n0f47OFmz610NLivIxqcXIs//wv
O8KMFq492M+KI8xKqTJSUw6/wDl3z+18/uxBm0fq6BoOmbD0/Srsf3fukIZINI3GJfLu3ct2
GeXDx1ABvodl2jXFh6o/AvEvQxEqotPpijVukZGRkZGRGIYRBEGSZGFhoVgsLigoqKurMzc3
t7a2RoohFHDHbqq4/F3e8YOkvLV9BDAKjd1tOHfs9yh3CATiX0/rcaXGq2RxLYdhhpiYABqU
PLj4lPHBj3MHWNMAuAPnf5YQvv7qo7L+Pk+VpvsrAtnijNM/7Qi3mLdjlruWwtfHOI69fZ0M
aQB9h/fUCy0b/clAJwaA0bBB7n8eyCogQJ9q4tJdcXlL/75OB85nFxNgCYDxBs9fPNqDBgD1
y8ibnlwuFNSCnp27nZEWFbScexiqKwfPwHTigi3/1sL+d+cOaYhE0yDyrNCQfJdJPlwUVnof
y7SLig9V/3cTtK4N0WHWr1+PREB0ZPika647+5Auyh0CgUA0NB2tfktxm/f7jokmOCGtLct+
ce3Ajm+3Y799OygvO5fqMMH+9X5GdMduDtjj3AKpmfJ0AgDIuqhDm2+8qrOYYmOg5JoYk0UH
8vVrWjAGiy6TSkkAoirp77/OhUa+zKuoFdZKDW3q3yuAN3kpR4uTU2yGTuoZ8tvypUlDx0wc
N9hDn4ZKGoFAqA/F9qMDZ5EMqPgQCAQCgUAgEAhEG+DqHUXjGNj7f7xokmFMyItqIEnAMGj0
IBjDMQxAZToAgLig2mLesg+Ivw//XajuW37lmWdXr/+7tvuMNZt3Bv+5rK/K6FCLk1NMRny7
d9/yQdyMs99+tuiHW7mopBEIBAKBQCAQCAQCgUAgNAvejmNJgpCTErEEN7Myl6Ynpb9ecyvN
SEwHSxtzuop0CgAAu++nKyYNnT6nV+7Jv8KqSLUuWJEQlW09Ys6I7namBlw2DVe5pEHZyTGm
ue+k5T/u3Tfb8NnRa6ikEQgEAoFAIBAIBAKBQCA0SxtxJcW+3YKaquKcuJv7dp4psPbx1KMY
9BvVs+bq3iOP8wQSQd6j4H03ZP3H+/FwFekYAGB0Ho+NYTp+M6dYRBw9nSxR5+bYunr07Oeh
aZXCiszQ4PORqjaPa3lyae7zpylFAqmkuig7v0rGZKGSRiAQCAQCgUAgEAgEAoHQLOrt241h
FIaOoY3n5NVzplhTAHQHf/UTGbz/0DdzN4u1zN38g7bO8NXGVKY3igfhxsPnjby+6tCND75v
+x1t7N4fr4jfvmfN3GMcqx5DevU0DG39+IaTB36lH37l6PYdRRViGt+216fLJ6GSRiAQCAQC
gUAgEAgEAoHQLFhJSQlSAYFAIBAIBAKBQCAQCAQC0V5wJAECgUAgEAgEAoFAIBAIBKIDoLgS
AoFAIBAIBAKBQCAQCASiI6C4EgKBQCAQCAQCgUAgEAgEoiOguBICgUAgEAgEAoFAIBAIBKIj
oLgSAoFAIBAIBAKBQCAQCASiI6C4EgKBQCAQCAQCgUAgEAgEoiOguBICgUAgEAgEAoFAIBAI
BKIjoLgSAoFAIBAIBAKBQCAQCASiI6C4EgKBQCAQCAQCgUAgEAgEoiNQ5XIZUgGBQCAQCAQC
gUAgEAgEAtFeqA2f0tLS8/LzhUIhEqUzsNlsM1NTe3s7JClSFUmKJEWyIFWRpEhSBFIVSYpU
RfyDkjY+JwKB6CKwwsICAEhISBQIBF5enhyOFhKlM9TWCqKjY7W0OACAJEWqvheSkiT06OGt
pYUk7RQCgeDFi0gMA2SlqO4jSZGkSBakKpIUqYp4RyRtOKebmytSGIHoIurjStdv3Ozt60Ol
UuVyORKlM1AoFJlM9vDRExqNiiRFqr4Xko4dM5rD4SBNNOEM1V66fAUAkJWiuo8kRZIikKpI
UqQq4l2QtOGcY0aPRAojEF1E/To4qVSGYTiauqkRGAxmba2Aw9FCkiJV3wtJWSy2TIbcIA3A
YrGlUhkAICtFdR9JiiRFIFWRpEhVRGckxXGNScpkMmtrBUhbBKLreLO/EkkSJEkiRToPSRJy
OYEkRaq+L5ISBEEQBBJEs9oiK0V1H0mKJEUgVZGkSFVEZxxUTUlKEPXnRLwjSCXiUjobAPQl
QihKohjRoTKZTTsJ+r+K5GZInw6QkpJy/foNHMcAAFNszAFAsP0geAAAIABJREFUkiSGYQRB
eHp6BQT4N6SrIjUt3aGjO5FRURl0TYOI+hWk6nsjKUmSSFtkokhYJCkCSYpURZIikKr/VknV
OWdExPN2nbNXr54avEN6QQHt8WNGTCw1P19KknWmprUeHqLevjRjYxqN1mZEoCOBACoNABgM
BpvNrqqqqqyslEqlGIYxmYwuuiIAFADlhzLsGV9nXHnauBfT9W0rtXXtqOXVDF1MSrGrktAw
Cvw7cvqWiY2NFQqFQ4cOTU5OLiwsBAAqlWpkZKT4fObMGZFINHz4sK7LLIorvSU8Pb3adXxM
TDQSrU32lnKPVugICPxNEo4DhgMAkAQ0moOjhRMf8asX6Fch0ZR2tA197eY0YncWWS2DNiXV
ocIiayzIHkcCtu6yICvtamgp4fTwy8yn10gCMAwwCtT5jpb4jJY69ULidKaTUjzjUvUv6qTa
pFs398b/ikSi+/fvZ2ZmymQyBweHAQMGMJnMxgfEx8ch0VC/j/h3MHfuvHYdf/DgASTafxkq
lcq5eJF58hSUllbpGdfqGmCEnJeeyX3+vO78+YIpk+sGD9HS4lAoFA1ekcFgKl7aE/OyqEpQ
BgBWJnxHG152dnZ5eTmLxdbgFaUSseLDshrOBQETAEz5EPGoaNOrJIq7B4irAUBKsauSTccY
hhrX9m3mtIFqQWJWwcba2hJD3Tl2lh+9HUPy8fEpKCj46aefSJJUbEzGZrNpNFp1dbWpqSmO
43K57IMPPuii0BJV6dgSAAqLisIjIktKS+d/Mmv/n4cBIHDYEAC4cesOACgSDfT1fXp5GxsZ
oeagxdiy+TSQmJiY+6GhVCp14oQJd+7eLSws9Pb27tWz59Fjx2praz+ZM0dYV3f61CmCJMeP
H29na4sefaij6rHGziVOAakYSvKhshgAgGsIeqZAYwAhBwABgR+r0PlMrxIp2VJSgIYPsKdx
UKlVSatlsCeLDLL/NxtqeUZW8YOnhfcftnKM8YD+hv59dG2tXysJyErfQt1vgPdVAC4X6a7Y
w/n5IobX92i1d0+Ub5kvxymVm+8jAdWXVBE5aogfNXM7FP82fIs6KfWtVCQSBQUFBQcHi0Si
hkQmkzl37txNmzY1RJeQpKjf/6cMFfn8XVf9Fek4jiu+amhjGyaMoxa1A5J2zul994JKgOn8
tot26dJLtuFy/ogogisrwzEgqSQxhJ33bV2i5a7dmYWFFVOm8Pl8jYQ/qFQqm81msdi/nXy2
62R4Zc2bvomnzVw8zWdCf/PMzEyplKepK0JRkvzktys+uXHuHseX/mgTa9lsi4gIzz4RLJcA
Xay2VpvDqamtLtYxiK8S8nG6xl7b9w/kVBFHIx/JmF+YWOfLpCCuW1tQGW6ovZ1C6fIJPTiO
BwcH6+jo7N69+6uvvuLxeJmZmdOnT9fW1t68efPq1atv376tr6/v6+vbhXGllpX23v1HQwcP
sLKyqqsTLl20EAAkEjEAKD4rErOzs2/fvT996sTGP/x9ycIwEQmAYRQ6h8s3tvYICBzaz0Zb
5ayGumc7lh+Ks5ny81eD9DQ79YEU5oTfvnov6mVhmUDO1OEb2bj2HTuhryVd1fF1OY8vnb6f
kFVYKWOZDZm3fJITvcONVzNJr1y9mpGVZaiv/9XXX8cnJKz55pvZn3wy75NP4uLjP/rwQ7FY
/PmSJWNGjXz89Om9ZaEH/vijU5JqSD5xRX5BNaltZKbHbBrUJMpv/7r22Et2/yU/zO3WIJE4
6s9v//cM/D7/Ya5NytFfTyZZT1w5swdfc3fZUtWaeucSAyAh8RHcPgQpz6CmAgBAiweOPjB0
Nrj6AeAAZE2jx5s3Ni8+kW0944flw+ttTvTiwJpdz4QM77m/LuzJUlyu5smv3/wVxx/23frx
tpT26NPSvK0n/bRyiKFyKYjcKz+uvfyKAAAMo7F1+Hwztz5DRg5yNaACSKN/X/5HmIgEAAyn
c/hGdl4B40f72XAwDUraWNiq+qCSWpJWyd40HdunjrhY1nLhOm44bsvJT2t+nPj9fdOZB37/
0Pa1CNIXO6d8c5Mz9dfDc50okscbGw6QPd448fs7dSQAhlEZOroGFk59Rk2dGGiXteOjb1q/
xJ26xuaBMQd+e3Ultllp+pp+6tTt4gdPDPJe+QT4tHJMZl5u8QOSb2OlygHqsJXmXvlBpWG8
A16fWvbfZXVfAX9pD1bvEYY/X5PnpVfuDqrYu40UA2dIb+5H31jcEpSsHoct7VnxvyZz2g+v
/DyksqUVYXqDvtw6ruK3NmprKx5EZ6sqWR3bFc2m+pI2Cyo1m52k9BgkqTpWmpWVFRgYmJWV
1TLYtHv37mvXrt24ccPa2hpZ6X+p329SFg19GTdgyfaPXKhtnlOsxvnbaagd8/lvb1vciis4
z5PxTgzZpSUvbly7H5+VnV+F800tbbsNHj3EU4/2dqp/fdXFMLFYTKFQFNtZUigUxfGqVt/8
vmRhmJhqMzbo25Fm9fYgTzvx7bZbMv+VP46RHN+043Gd64w1KwfoY/Ve+ZP/bTwaQ/Ve+E2P
F+v3RRiM2vDdSItGk01rIoO/2xshdp224Qt/QwwASEH0kbV7woTO0zZ8GWAE7Rwudd6e1Q0D
/fMwGAwfHx8Wi0WhUA4eOMDmcLhcrsbnenD+vka7dCm/pCZTLKm089AyZns4GAHAg8js60xL
olvPI7Jwq1OnX3C5tFGjuVwdTeSLyWKxv/r11l9XYxQRloYrVtaIHrzIXjLNt7KyMisri0aj
a+SKAJD4V8K652Y/OlEsnCSXDaa8CUbQsmrK2QB2HE4NCC9y2VAt1scohhoqwX8gpxglTYu7
kEsrJQHkJMiJulrBmbpalhZs6WqLJQhizJgxP/7446xZs9hs9qtXrwBg//79BEGYmpoGBgbK
ZLKcnJyujSsRhLxZm1grFBobGyk24W+8Fb9MVv9ZKBQaGxvVCoUtaz7ONnF1MqaJq4oLC7Oi
bmUkZ9atWjbMBFfVcjRqlDWYNfmru3u3nEmtpbAMTG1dtIiqoryY2Pzhk1RdhRTGnt721zOR
kZvf4N5aMszagNKxG1JMPGsmKZ1Of/TokaGBwUcffhgZGbn/wAEHe/shgweHPnhw8tQpc3Nz
nEKZPnUaj8c/d+HCs2fPrKwsOy6phgTMubN30x1xwNJNs12b9gsY19vb7lRKalxUusTNub5z
lmbGJQuA7ePlSCcEFQVllWXM8jogeRoqU6Wqvv6OgJAjcHITVJfiGIbhGEmQIK7FnpyXx92H
yUEw9BPA8ca9lIuLIZ6Rm5xaN0yXDQAgy4hNriOAFGWmZkp7uFABgKxNjEuRYIaeXpa4UkNQ
rY8S8yZBpXmTJAmA4bo2HrY6UkF5cV5h0v2zL5NLF307zZlDkm9KX1RRlF8QF3I8q5y2/jOf
zvv0jSSFzktq7+sXUEMAYJXp4bEFmJl7LzsuCYBzbXUwspps4XfVfyShUVjrTYgL17Ls4WVJ
ryvLy81NeXQ6MSq59tcFbV4C17Ls4WXBru/uMZqTPkaWqkhXq25n3wrp1a8HWVfXyjHWfO3n
t0IcP56mKG2CkCt3MdsvaWuG8c8vA1fP/ruy7vNXBGiNnq+3dGf59s95s77jL/mFv+SX4mWD
BX+H1D0Zy52zyODHi2W/LCSX+1dsC234laW7V89aEgBqcuNflmKGDm4WWgCAaZlzMLK8rdoK
rdf0zlRVQqz5ZrNdkjaeo7R58+aQkJDbt283/KRnz57h4eGNj2n4IZK0FSsViURKg0rNok7R
0dFMJhNJ+p/p95uUxesIFcax1MFUewqNzkl22AZUSdoxn791V/BdiAsQlbHHdwWH5IoYXBML
GwtJyauEJ+lx0VFD5y6e2k1jT2dbM9TXB5iZmdXW1jKZTBaLJRAIcBzHcby8vJwgCOXzlUhp
1s0zoT5LByliR6Ripg0JwHYfM8Y75kjUlfNPveb14WJA1rw4fymmju318YQe2tkvlEVltDzH
T+6eeCD68okn3Rb35WPCpLOnwsoZtlOm+RmCLLd9wyVN2LN6ksrlMnXmK61duw4ANm7c0OY5
ZTJZe+9ELBZnZ2c7Ozs/efKkpqampqamsqLC0MiIzWZrLHRVVsY8fqLW2u5JYaazqHB79jWX
7cHafX0AoLJGdCU05UFkNixcz0xNtb54Kd3dnevh0dnBP5WmpaWVXVCpCLVYmfBu/T6Tp81s
ckUANze3tLS0/Pw8jURbyOQX9r4EjyeHOjkAiK/fWPNg+A3r4X/z+w2G0wDASI6tdfbgcGqY
2G0pzU1EaCCu9I/kFAC4OkF0WikJQAAQGMgpQOdCOXmKFK3HMFbXBtKl0lWrVvXu3TspKcnG
xoZKpWZnZ5MkyWazBw4cqK+v36VXV9kvfrF4gVBY18bAQk58sXiBQCBo8Uyt57QFH5hjACDO
vLR909/pDyLyhoyxeKsbsRC5T+6n1dKdZ3y7cKihor+TVVWKtVVOcCMLUzOqge03Zf5MN5rG
b0cilY4dM2blihVUKnXP3r0rli9fvWZNfkFB0Ndf/7J9e3p6elx83LmLFwqLijLT051dXOqE
te+cpI3CXDxPb4czL5Pio9Okzi40AAB5bkJ8Jcbu6enKBJzpv2Kzdx1d622MfnEKRFyDo+ut
DXgfL/u8W7dudDo9PDz8woULH3744fZt28pPfA88I+gzTjExXoGpq7PetfsZqdlSXxcagDwr
PqEamEyGpDozrYR0McEAJClxKRLMwLu7BeVtSEpzGv7JZ91pAECUh+368a+op48Sxzv3ojQt
fWnm6R9+uZ4QnSrx8WG+W5KO/nLNaAAAWfSuOV9ewXxnBy11f928SF61+xaMAj7/TjG5SZQc
vHLx8YSrocTBti7R6FcNFa9UeXo7iS4uTi0stuZqm+roAEB+dXVWVY2DsaGXoWHXSdqaYTDh
Pw419TnGoOqt/KNw6WDx8xDd5XsU6YY77houi80e41l1dLesuMDwp3OCu6eoqc9lDvU7aw6Y
OX8AAIA8+cR3W+5jHmPnfujwuorX5Xb2CVUnqiqu/xabTdVut2KEExQU1LNnz9u3b//0009B
QUEAMGnSJFXzmJCkrbB+/XpFUCkwMPD77793d3dXBJusra3XrVsHAF9++WVWVlZQUNCOHTuQ
pP+xfr+xa/cP0zGfv3VX8J+HrA47cSTkFW7/wReLxjhxMQBSnPv46K7jL24Hn3PaMMv7bdmx
RCJZuXLl5cuXAwICCIIQCATm5uZJSUl79+5ttsnaGxtncdiSlEvnI3vM78HFmrngPlNHhyWc
iDp7KdFjpiuedPVUeA3Lder0Pnxclq2iynB7Tx77LOV49IXzL7p9qHP91IMyqvXoqUNMKEBk
tXO49B7Ys2bJycnBMCwiPLwh0pSbk6Ojo2NgaEilauC5Gi3sGZSWpnyy/LuyZ1tSLjjUlYmX
LNM+sBu6d+dpM2eO8pw5yhMA4OOPeRs3Sq9fh07HlRSrvbIL6veeqxKIHkRmjwlwAoAmVwQw
MjJKTk52cXHpbLAjN5qIvgAAlZUU0oSiBZIRddUGuY+DXdZCBQDA1bO27NqEKRBb6+zBpcXR
aAl1UsfOT1l6+zmtL1NqPAbQuCrIASi4FEB4+k5BSIKMzdIe15fn303zMSYcx2/evGlraxsW
FhYcHIzjeIPPdu3atRUrVqhptF8FraFSqWtXr2ocQhUKhRt/3CKTyX7ZvKl9caWdu/bO/2RW
m1fduWvv3Nmt7ETFMLcxY2K5YrFEXnH/5zWn0l1n7Vzcmw1E9qVNG65X+y35aa4tAIC89MWR
baFZuRUyjp

  1. 2016-11-01 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] how is it indexing in cuda
  2. 2016-11-01 Ruben Safir <ruben.safir-at-my.liu.edu> Re: [Learn] not adequately speced of explained
  3. 2016-11-01 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] how is it indexing in cuda
  4. 2016-11-01 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] not adequately speced of explained
  5. 2016-11-02 Christopher League <league-at-contrapunctus.net> Re: [Learn] Fitch Algorithm - C++
  6. 2016-11-02 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fitch Algorithm - C++
  7. 2016-11-02 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] how is it indexing in cuda
  8. 2016-11-02 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fitch Algorithm - C++
  9. 2016-11-02 IEEE Computer Society <csconnection-at-computer.org> Subject: [Learn] Hear Google's John Martinis Take on Quantum Computing at
  10. 2016-11-02 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] opencl
  11. 2016-11-02 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] scheduled for tommorw
  12. 2016-11-02 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] threads tutorial
  13. 2016-11-03 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fitch Algorithm - C++
  14. 2016-11-03 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fitch Algorithm - C++
  15. 2016-11-03 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fitch Algorithm - C++
  16. 2016-11-03 Christopher League <league-at-contrapunctus.net> Re: [Learn] huffman code
  17. 2016-11-03 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] huffman code
  18. 2016-11-03 Ruben Safir <ruben.safir-at-my.liu.edu> Re: [Learn] huffman code
  19. 2016-11-03 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fitch algorithm from the beginning
  20. 2016-11-03 From: <mrbrklyn-at-panix.com> Subject: [Learn] huffman code
  21. 2016-11-03 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Phenology meeting
  22. 2016-11-03 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] relevant hackathon
  23. 2016-11-03 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] relevant hackathon
  24. 2016-11-04 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] huffman code
  25. 2016-11-04 Christopher League <league-at-contrapunctus.net> Subject: [Learn] Fitch/Sankoff
  26. 2016-11-05 Christopher League <league-at-contrapunctus.net> Re: [Learn] Fwd: templates within templates
  27. 2016-11-05 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: Re: const T vs T const
  28. 2016-11-05 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: Template Library files and Header linking troubles
  29. 2016-11-05 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: templates within templates
  30. 2016-11-06 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fwd: templates within templates
  31. 2016-11-06 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Fwd: templates within templates
  32. 2016-11-06 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fwd: templates within templates
  33. 2016-11-06 Christopher League <league-at-contrapunctus.net> Re: [Learn] Fwd: templates within templates
  34. 2016-11-06 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Fwd: templates within templates
  35. 2016-11-06 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Fwd: templates within templates
  36. 2016-11-06 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Fwd: templates within templates
  37. 2016-11-06 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] GNU Parallel 20161022 ('Matthew') released [stable]
  38. 2016-11-07 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] templates and ostream for future reference
  39. 2016-11-08 Christopher League <league-at-contrapunctus.net> Re: [Learn] C++ signature ambiguity
  40. 2016-11-08 Ruben Safir <ruben.safir-at-my.liu.edu> Re: [Learn] C++ signature ambiguity
  41. 2016-11-08 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] C++ signature ambiguity
  42. 2016-11-08 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: Invitation: Phylogeny meeting -at- Weekly from 10:15 to
  43. 2016-11-08 Ruben Safir <mrbrklyn-at-panix.com> Subject: [Learn] Fwd: [nylug-talk] RSVP open: Wed Nov 16,
  44. 2016-11-09 Christopher League <league-at-contrapunctus.net> Re: [Learn] merge sort parallel hw
  45. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] merge sort parallel hw
  46. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] merge sort parallel hw
  47. 2016-11-09 Christopher League <league-at-contrapunctus.net> Re: [Learn] merge sort parallel hw
  48. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] mergesort tutorial
  49. 2016-11-09 Christopher League <league-at-contrapunctus.net> Re: [Learn] mergesort tutorial
  50. 2016-11-09 Christopher League <league-at-contrapunctus.net> Re: [Learn] namespace and external files confusion
  51. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] namespace and external files confusion
  52. 2016-11-09 From: "Carlos R. Mafra" <crmafra-at-gmail.com> Re: [Learn] Question about a small change
  53. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] =?utf-8?q?C++_call_of_overloaded_=E2=80=98track=28int*=26?=
  54. 2016-11-09 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: lost arguments
  55. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: [dinosaur] Dating origins of dinosaurs,
  56. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] merge sort parallel hw
  57. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] mergesort tutorial
  58. 2016-11-09 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] namespace and external files confusion
  59. 2016-11-10 Christopher League <league-at-contrapunctus.net> Re: [Learn] merge sort parallel hw
  60. 2016-11-10 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] merge sort parallel hw
  61. 2016-11-10 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] merge sort parallel hw
  62. 2016-11-10 Ruben Safir <ruben.safir-at-my.liu.edu> Re: [Learn] merge sort parallel hw
  63. 2016-11-10 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] [Hangout-NYLXS] mergesort tutorial
  64. 2016-11-10 Ruben Safir <mrbrklyn-at-panix.com> Subject: [Learn] Fwd: [Hangout-NYLXS] ease your mind- everything in the
  65. 2016-11-10 Ruben Safir <ruben.safir-at-my.liu.edu> Subject: [Learn] Fwd: [Hangout-NYLXS] R Programming Workshop
  66. 2016-11-10 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Paleocast phenogenetic tree building
  67. 2016-11-11 Christopher League <league-at-contrapunctus.net> Re: [Learn] merge sort parallel hw
  68. 2016-11-12 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] HW of mergesort in parallel
  69. 2016-11-13 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] merge sort in parallel assignment
  70. 2016-11-14 Christopher League <league-at-contrapunctus.net> Re: [Learn] merge sort in parallel assignment
  71. 2016-11-14 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] merge sort in parallel assignment
  72. 2016-11-14 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] merge sort parallel hw
  73. 2016-11-14 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] CUDA and video
  74. 2016-11-14 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] PNG Graphic formats and CRCs
  75. 2016-11-15 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: PNG coding
  76. 2016-11-15 ruben safir <ruben.safir-at-my.liu.edu> Subject: [Learn] Fwd: PNG Coding
  77. 2016-11-16 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Fwd: lost arguments
  78. 2016-11-16 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] relevant hackathon
  79. 2016-11-16 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] C++ Workshop Announcement
  80. 2016-11-16 Ruben Safir <mrbrklyn-at-panix.com> Subject: [Learn] Fwd: Re: ref use
  81. 2016-11-16 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] ref use
  82. 2016-11-16 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] why use a reference wrapper int his example
  83. 2016-11-17 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] [Hangout-NYLXS] at K&R now
  84. 2016-11-17 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: [Hangout-NYLXS] Fwd: PNG Coding
  85. 2016-11-18 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] C++ workshop and usenet responses
  86. 2016-11-19 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: ref use
  87. 2016-11-20 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] when is the constructor called for an object
  88. 2016-11-21 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: creating a binary tree
  89. 2016-11-21 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: hidden static
  90. 2016-11-21 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: ISBI 2017 Call for Abstracts and Non-Author
  91. 2016-11-21 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: PNG coding
  92. 2016-11-21 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: Re: the new {} syntax
  93. 2016-11-21 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: when is the constructor called for an object
  94. 2016-11-21 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: when is the constructor called for an object
  95. 2016-11-21 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: [dinosaur] Eoconfuciusornis feather keratin and
  96. 2016-11-21 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] look what I found
  97. 2016-11-22 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Cuccuency book
  98. 2016-11-22 ruben safir <ruben.safir-at-my.liu.edu> Subject: [Learn] declare a func or call an object
  99. 2016-11-22 Ruben Safir <ruben.safir-at-my.liu.edu> Subject: [Learn] Fwd: Re: Using CLIPS as a library
  100. 2016-11-23 Ruben Safir <ruben.safir-at-my.liu.edu> Subject: [Learn] Fwd: Simple C++11 Wrapper for CLIPS 6.30
  101. 2016-11-23 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Parrelel Programming HW2 with maxpath
  102. 2016-11-24 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] great research news for big data
  103. 2016-11-24 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] mapping algorithms
  104. 2016-11-24 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Todays meeting
  105. 2016-11-25 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: [dinosaur] Flightless theropod phylogenetic variation
  106. 2016-11-26 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Note to self for Thursday
  107. 2016-11-26 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fitch etc
  108. 2016-11-26 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Note to self for Thursday
  109. 2016-11-26 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] operator<<() overloading details and friend
  110. 2016-11-27 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] 130 year old feathers analysis
  111. 2016-11-27 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: ACM/SPEC ICPE 2017 - Call for Tutorial Proposals
  112. 2016-11-27 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: ACM/SPEC ICPE 2017 - Call for Workshop Proposals
  113. 2016-11-27 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: CfP 22nd Conf. Reliable Software Technologies,
  114. 2016-11-27 ruben safir <ruben-at-mrbrklyn.com> Subject: [Learn] Fwd: Seeking contributors for psyche-c
  115. 2016-11-29 Christopher League <league-at-contrapunctus.net> Re: [Learn] Look at this exciting output by my test program
  116. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Look at this exciting output by my test program
  117. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Re: [Learn] Look at this exciting output by my test program
  118. 2016-11-29 Christopher League <league-at-contrapunctus.net> Re: [Learn] Quantum Entanglement
  119. 2016-11-29 Ruben Safir <mrbrklyn-at-panix.com> Re: [Learn] Quantum Entanglement
  120. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Here is the paper I was talking out
  121. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Look at this exciting output by my test program
  122. 2016-11-29 nylxs <mrbrklyn-at-optonline.net> Subject: [Learn] Look at this exciting output by my test program
  123. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] Quantum Entanglement
  124. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] The Death of PBS
  125. 2016-11-29 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] witmer lab ohio and 3d imaging
  126. 2016-11-30 Ruben Safir <ruben-at-mrbrklyn.com> Subject: [Learn] phylogenetic crawler

NYLXS are Do'ers and the first step of Doing is Joining! Join NYLXS and make a difference in your community today!